
Practical Service Provisioning for Wireless Meshes

Saumitra M. Das, Dimitrios Koutsonikolas and Y. Charlie Hu
School of Electrical and Computer Engineering, Purdue University.

ABSTRACT
Community wireless mesh networks (WMNs) are increas-
ingly being deployed for providing cheap, low maintenance
Internet access. For the successful adoption of WMNs as
a last-mile technology, we argue that a guarantee of per-
client fairness is critical. Specifically, WMNs should support
a “bitrate-for-bucks” service model similar to other popular
access technologies such as Cable/DSL.

We analyze the effectiveness of both off-the-shelf and the-
oretically optimal approaches towards providing such a ser-
vice. We propose the APOLLO system that outperforms
both these approaches.

APOLLO seamlessly integrates three synergistic compo-
nents: theory-guided service planning and subscription, rate-
based admission control to enforce the planned service, and
a novel distributed light-weight fair scheduling scheme to
deliver the admitted traffic. We evaluate APOLLO using
simulations and testbed experiments.

Categories and Subject Descriptors : C.2.1 [Network Ar-
chitecture and Design]: Wireless communication
General Terms : Algorithms, Performance

Keywords : mesh networks, service plans, fairness

1. INTRODUCTION
Wireless mesh networks are increasingly being deployed

for providing cheap, low maintenance Internet access (e.g.
[33, 35, 32]). In contrast to other multi-hop wireless net-
works such as sensor networks or mobile ad hoc networks,
a WMN aims to be a last-mile technology and thus it must
compete with existing last-mile technologies. An important
feature of other last-mile technologies (such as cable and
DSL) is a “bitrate-for-bucks” service model, i.e., a client is

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CoNEXT’07, December 10-13, 2007, New York, NY, U.S.A.
Copyright 2007 ACM 978-1-59593-770-4/07/0012 ...$5.00.

typically promised a bandwidth she pays for, such as 128Kbps
for $24.99/month. Thus, a fundamental requirement for WMNs
is to provide clients with similar service options1. This re-
quirement is also key to the adoption of WMNs. Even in
places where other access technologies are unavailable or
costlier, such a service model is essential to build long-term
customer loyalty. The key challenge for such service pro-
visioning is to provide guarantees to the clients of a WMN,
especially in the presence of the lossy wireless environment
and multi-hop routing in WMNs.

In this paper, we assume that the bitrate-for-bucks promised
in a deployed WMN is always achievable by the theoretical
capacity of the network 2. In the absence of such a condition,
it is infeasible to provide any guarantee to WMN clients.
Given that theoretical capacity exists to support the promised
service, we explore the effectiveness of various techniques
to provision the “bitrate-for-bucks” service model in WMNs.
Wireless meshes are typically constructed using off-the-shelf
802.11 radios since such devices are cheaper due to economies
of scale. We thus first explore the service that can be pro-
vided using a WMN built from off-the-shelf 802.11 hard-
ware and publicly available software and protocols. We find
that the performance of off-the-shelf 802.11 is inadequate
for our target service model. This inadequacy is tied to the
fact that the 802.11 MAC layer fundamentally is oblivious
of fair access to the wireless channel for multi-hop flows.

In search for a good solution, we investigate a theoreti-
cally optimal approach termed Fair Scheduling (FS) that as-
sumes time-slotted medium access schedules transmissions
to obtain fair service. We find that this approach with modi-
fications to account for practical limitations can indeed pro-
vide a “bitrate-for-bucks” service model for specific network
topologies and traffic patterns. However, we also find the as-
sumptions made in the centralized scheduling idealistic and
limiting the applicability of the solutions for real WMN de-
ployments.

Finally, we propose the APOLLO system that leverages
off-the-shelf hardware with software modifications to pro-

1Enterprise deployments of WMNs where there is no such charging
mechanism are outside the scope of this paper.
2The capacity value assumes perfect scheduling by an omniscient
entity which may not be attained by real protocols.

vision the “bitrate-for-bucks” service. APOLLO seamlessly
integrates three synergistic components: (1) A theory-guided
service planning and subscription technique to decide how
to admit new subscribers. (2) A rate-based admission con-
trol to restrict the upload/download traffic from clients in ac-
cordance with their service plans. Importantly, APOLLO
uses immediate admission control at the access mesh router
of the client such that all packets that enter the mesh back-
bone network are “good” packets that should receive ser-
vice. This ensures that the traffic in the network is below
the capacity of the network. (3) A novel distributed light-
weight fair scheduling scheme to deliver the admitted traffic
that is robust to unfairness that can arise from interference,
variability in wireless channel quality, collisions, etc. This
approach rests on the fundamental observation that all such
phenomena are concisely represented by an increase in the
queue length of the affected node. APOLLO prioritizes ac-
cess to the wireless channel in interference neighborhoods 3

based on the nodes’ queue lengths, i.e., nodes with larger
queue lengths receive transmission priority. This approach
robustly deals with unfairness (and consequent queue back-
log). Compared to previous time-slotted fair scheduling ap-
proaches [24, 25], APOLLO does not need to schedule par-
ticular flows on specific nodes in specific time-slots since all
packets in all queues are “paid-for” packets and nodes coop-
erate and prioritize among each other to get these packets to
their destinations.

Our evaluations show that APOLLO can effectively pro-
vide a client with the service it paid for in many different
network topologies and traffic scenarios. A deployment of
an APOLLO implementation over a wireless testbed also
demonstrates that APOLLO works well in real-world sce-
narios. We believe that the use of APOLLO and a “bitrate-
for-bucks” service model will aid in the widespread use and
adoption of community wireless networks. APOLLO uniquely
proposes using admission control in WMNs as a necessity
since (1) wireless channels have limited capacity which ren-
ders overprovisioning of the backbone network difficult; (2)
shared wireless media access provides no built-in link-layer
support for restricting traffic from greedy clients. Admission
control also has favorable implications towards mesh net-
work management since it also enables robust, scalable and
secure operations in a mesh by allowing flexible placement
of client population, allowing planned deployment, uptime
and downtime in a mesh, and preventing DDOS attacks.

2. ARCHITECTURE
This section describes our WMN architecture. We con-

sider a typical wireless mesh network with omnidirectional
antennas, in which mesh routers are placed on the rooftops
of clients [33] or other infrastructure (e.g., streetlights), and
are interconnected via wireless links. One or a few gate-
ways are connected to the Internet and propagate traffic to
and from clients. The gateways are not widely deployed

3A set of nodes whose transmissions interfere.

A DB C E

F1
F2

Figure 1: Sample network topology.

due to cost and uplink constraints. Clients can be mobile
or static and each one is associated with a mesh router (at
a given time). We assume mesh routers communicate with
their associated clients using different radios/channels from
those used to talk to other mesh routers. In fact, the WMN
may even use multiple radios for the backbone links. Further
we assume that the WMN employs a 802.11 MAC layer.

Such a WMN provides Internet access as follows: Each
client’s packets are first received by the client’s access mesh
router, i.e., the mesh router the client’s interface is associ-
ated with. These mesh routers then forward the packets to
the gateway mesh router (GMR) using other mesh routers.
The GMR provides Internet connectivity through a high band-
width wired/WiMax interface. The gateway may perform
other functions such as IP address assignment or NAT. All
the MRs use a routing protocol (e.g. OLSR [5]) with metrics
such as ETX [6] to find routes to each other and to the gate-
way. The WMN can also be used for peer-to-peer (P2P) traf-
fic between any two clients. In that case packets are not sent
to the gateway, but they are routed from the sender client’s
access mesh router to the receiver client’s access mesh router
using the same routing protocol used for Internet access.

3. “OFF-THE-SHELF” SOLUTIONS
We first explore how current popular off-the-shelf solu-

tions (e.g., 802.11 protocol with ETX routing) work in terms
of the service they provide to individual clients. We study
the topology in Figure 1 using the Qualnet simulator [23].
In this figure we have 5 nodes, namely A, B, C, D, E, in a
chain. All links are of the same distance, have similar loss
rates of approximately 10% and each node is within trans-
mission range of its one-hop neighbors. We use the 802.11b
MAC layer with a rate of 2Mbps. Nodes A and C each gen-
erate one UDP 4 flow to the gateway node E. The per client
service plan assigned in this topology is 140Kbps for a given
price. We ascertained that the network can support this ser-
vice plan (see Section 5.1). Further, we assume that the ser-
vice plan is always chosen to be close to the capacity of the
network. Overprovisioning a network is not economically
viable.

Figures 2(a)-2(b) show the throughput, and average packet
delay for each of the two flows in three scenarios: (1) Users
demand more than the service plan (both transmit at 300Kbps)
since this solution has no enforcement of service plans; (2)
Users demand their service plan (both transmit at 140Kbps);
and (3) Users demand less than their service plan (both trans-
mit at 50Kbps).

4We use UDP to measure performance since it does not provide
a conforming workload. This choice is widely used in wireless

0

50

100

150

200

250

300

Scenario1 Scenario2 Scenario3

T
h

ro
u

g
h

p
u

t
(K

b
p

s
)

F1 F2

(a) Throughput

0

1

2

3

4

5

6

7

8

9

Scenario1 Scenario2 Scenario3

A
v

e
ra

g
e

 p
a

c
k

e
t

d
e

la
y

 (
s

e
c

)

F1 F2

(b) Average packet delay
Figure 2: Throughput and delay of 2 flows in the sample network

topology.

From these three figures we make the following observa-
tions about the performance of off-the-shelf solutions: (1)
When the flows are allowed to transmit whatever they de-
sire, the network is overutilized, and the service provided is
grossly unfair, i.e., one user (F1) gets less than their service
plan. (2) This unfairness is also observed when the flows
transmit as per their service plans and the network is oper-
ated near capacity in scenario 2. This unfairness becomes
more prominent if we look at the average packet delays of
the two flows. The average packet delay for flow F2 is 123
msec, but for flow F1 it is 5.75 sec, that is 47 times larger.
(3) Finally, when the flows operate below their service plans,
the network is underutilized and off-the-shelf solutions work
fine because the occurrence of inefficiencies in accessing the
medium are outweighed by the time the medium is idle.

Thus, off-the-shelf approaches are inadequate for our tar-
get service model and only work when the network is under-
utilized. When the network is utilized well or overutilized,
802.11 is unable to allocate service in an acceptable manner.
The lessons learnt from this experiment are: (1) policing the
traffic allowed to enter the network is a necessity in order
to provide any guarantees as per service plans; (2) service
plans can be offered by highly over-provisioning the network
which however is not economically viable; (3) operating the
network within (close to) network capacity, e.g., by policing
the admitted traffic, alone is insufficient due to unfairness,
and additional mechanisms are needed to mitigate unfair-
ness. With this in mind, in the next section we investigate
a TDMA 5 approach for service provisioning that is theoret-
ically optimal (under a set of assumptions).

4. “OPTIMAL SCHEDULING” SOLUTIONS
As an example of a theoretically optimal solution we con-

sider “Fair Scheduling” (FS) for wireless mesh networks.
We first provide a brief background of FS.

4.1 Fair Scheduling (FS)
FS assumes knowledge of routing paths (a tree from the

gateway to all clients) and uses a scheduling algorithm based
on spatial TDMA [19] to schedule transmissions of mesh
routers such that all clients in the network receive a fair

network studies.
5Assuming a new MAC layer can be deployed.

share of the bandwidth. The specific example technique for
FS used in this paper is from [25] and consists of three
phases: compatibility matrix (CM) construction, clique enu-
meration, and clique selection.

The algorithm starts with the construction of a compat-
ibility matrix (CM) which denotes which links in the net-
work can transmit simultaneously. CM [ij] = 1 if links i
and j do not interfere and can transmit simultaneously and
CM [ij] = 0 otherwise. In [25] the CM is constructed based
on the following rule: “Two links interfere if the sender of
one link is within transmission range of the sender or the re-
ceiver of the other link”. The algorithm then enumerates all
possible cliques 6 in the CM . Links in the same clique can
transmit together to exploit spatial reuse.

Let Clαk denote the α-th clique of cardinality k and Lα
k

denote the most loaded link in Clα
k . The load of link LAB

l(LAB) is defined as the number of clients that use this link
to transmit traffic to or from the gateway. Let also da

k de-
note the number of slots required to transmit the traffic of
the most loaded link in clique Clα

k . Then da
k = l(Lα

k). Each
link LAB in Clαk is activated during l(LAB) time slots and
is idle during da

k − l(LAB) time slots. Hence, the clique Clαk
generates a gain g(Clαk) = (

∑
LAB∈Clαk

l(LAB)) − da
k.

A scheduling is defined as a set of cliques s that fulfills
the following two conditions: (i) all links that are part of
the tree are included in the schedule and (ii) each link is in-
cluded only once. Finding a schedule s with the minimum
cycle length Ts (Ts =

∑
Clαk∈s da

k) provides a fair share
while maximizing throughput. Instead of finding a minimum
length schedule by exhaustive search, the authors in [25]
propose a greedy heuristic according to which they maxi-
mize the total gain (gs) of the schedule instead. The length
of the calculated schedule in turn dictates the throughput (bi-
trate) that can be assigned to each client.

How well does FS perform in practice? To see how
efficient FS is in practice, we ran it over the topology in
Figure 1. While the length of the calculated schedule dictates
a service plan of 140Kbps for both flows, surprisingly, as
shown in Figure 3, we found that F2 achieves a throughput
close to the service plan (118Kbps) while F1 starves (58
Kbps). Most importantly, FS performs worse than 802.11.
Thus, theoretically optimal solutions directly applied do not
work well and the next section identifies why.

4.2 Improving FS
We identified two practical problems related to FS that

made it perform badly in practice: simplified interference
estimation and ideal link assumption.

Simplified Interference Estimation The interference rule
in FS is not enough in a realistic environment. A recent
work [21] has shown that simplified heuristics (2-hop inter-
ference) usually fail to model interference accurately and a
measurement-based approach is more accurate. In reality,

6While the problem of clique enumeration is known to be NP-hard,
computation is done with the Bron-Kerbosch [3] heuristic.

0

20

40

60

80

100

120

140

1 2 Avg
flow

T
h

ro
u

g
h

p
u

t
(K

b
p

s
)

802.11 FS FS+I FS+IR

(a) Throughput

0

1

2

3

4

5

6

1 2 Avg
flow

A
v
e
ra

g
e
 p

a
c
k
e
t

d
e
la

y
 (

s
e
c
)

802.11 FS FS+I FS+IR

(b) Average packet delay
Figure 3: Performance comparison of 2 flows in the sample network

topology for 802.11, FS , FS + I and FS + IR.

a node can be affected by a transmission even if it is at a
distance more than twice the transmission range from the
sender. Although packets cannot be properly received at
such long distances, they can still collide with other trans-
missions.

To take interference into account, we incorporated the BIR
metric [21] into FS by setting CM [ij] = 0 if BIRij < 0.9
7 (we call this FS +I , i.e., FS with Interference-awareness).
The BIR metric can take any value between 0 and 1 (quan-
tifying the real interference between two links) and is esti-
mated through offline measurements.

Ideal Link Assumption FS, similar to many other schedul-
ing algorithms in literature [15, 16, 17], assumes that the
only reason for packet loss is packet collisions when neigh-
boring nodes transmit simultaneously and scheduling avoids
these losses. However, in a real network, a second important
reason for packet loss is the time variability of the wireless
channel. Reflections, scattering and other factors cause mul-
tipath fading, which may randomly deteriorate the quality of
the links. This causes random packet loss which can severely
harm performance. 802.11, although still unfair, provides
higher throughput than FS because it includes a reliability
mechanism (ACKs and retransmissions) that helps nodes re-
cover from such random packet losses.

We added MAC layer retransmissions to FS by making
the sender wait for a certain amount of time in each slot after
each packet transmission for an ACK . If no ACK comes,
the sender retransmits the packet in its next time slot. A max-
imum number of retransmissions is allowed for each packet,
after which the packet is dropped. This number is a tradeoff
between reliability and throughput. We call this the version
of FS + IR, i.e., FS with both Interference-awareness and
Reliability.

Performance of improved FS We reevaluated FS with
our proposed fixes and the results are shown in Figure 3.
While FS scheduled node A and D together, FS + I sched-
ules them separately since it figures out that these nodes
interfere (their transmissions collide at node B). However,
the performance of FS + I is still affected by packet loss.
After incorporating both fixes, FS + IR provides an al-
7BIRij is measured as the ratio of total packet delivery rates over
links i and j when both are transmitting over when transmitted in-
dividually.

most optimal fair service to both flows; both flows achieve
a throughput of 140Kbps, equal to their demand. Most im-
portantly, this is achieved with only 1 retransmission attempt
per packet, while 802.11 has much worse performance even
with 7 retransmissions. Hence, assuming there is an oracle
that has all the necessary information to calculate the opti-
mal schedule all the time, FS enhanced with interference-
awareness and a simple reliability mechanism can provide
the service model we target.

4.3 Practical problems with FS
In practice, however, there are a number of fundamen-

tal challenges in implementing a TDMA-based scheme like
FS + IR which effectively prevent such a solution from be-
coming deployable. In the following, we summarize these
implementation challenges.

Real-time flow information, schedule calculation and
propagation: The optimal schedule in a TDMA approach
is directly related to the flows present inside the network,
i.e., going through each node. Hence, information about the
arrival and departure of flows and changing traffic has to be
propagated to the scheduler, which has to compute a new
schedule and propagate it to all the nodes, all in a timely
fashion. The reliable propagation of flow information and
the updated schedule is not a trivial task. Also, requiring all
nodes to switch to the new schedule at the same moment (in
order to avoid collisions) requires global synchronization.

Dependence on routing path: The optimal TDMA sched-
ule is directly dependent on the routing paths used by the
flows. Even if a node has a single associated flow, routing
path changes (which are frequent in wireless networks) ne-
cessitate frequently changing schedules.

Dependence on fine-grained time slot and synchroniza-
tion: In simulation, the time slot can be easily set equal to
the time required to transmit one packet. Such a fine-grained
time slot is difficult to achieve in practice. Hence papers that
offer implementations of time-slotted systems always use a
much larger time slot that allows for many packet transmis-
sions (e.g., [24, 20]), which cannot offer maximum perfor-
mance achieved by fine-grained time slotting. Further, tight
time synchronization among the wireless mesh routers is a
challenge in itself.

Link-quality adaptation: Finally, it is difficult to incor-
porate effective link-layer adaptation techniques such as rate
adaptation into the scheduling algorithm since link quality is
a highly dynamic quantity and even if known, would make
the schedule computation very expensive.

5. APOLLO: PRACTICAL SERVICE PRO-
VISIONING

Given the performance problems with off-the-shelf ap-
proaches and the fundamental problems in adopting fair schedul-
ing for real deployment, we propose the APOLLO system
which retains the simplicity of off-the-shelf approaches (by
being implemented on top of cheap 802.11 radios) and per-
forms practical scheduling of packet transmissions. One key

property makes APOLLO practical: its scheduling is oblivi-
ous to the number, the source and destinations of multi-hop
flows present in the network, and the routing paths by these
flows, and it does not require fine-grained time synchroniza-
tion 8. This section presents the design (theoretical formu-
lation for service planning, admission control for enforcing
service, lightweight scheduling to deal with unfairness) and
implementation of the APOLLO system.

5.1 Service Planning
The foremost question for service provisioning is: If a

new client wants to subscribe to the network, how can we
decide if the client’s desired rate plan can be supported based
on the network link and interference characteristics, existing
clients and their rate plans, etc. If not, a closely related fol-
lowup question is to analyze what hardware configuration
and provisioning need to be changed to accommodate the
client at the lowest cost. This is an interesting research prob-
lem by itself which we are investigating. We now outline
some methods that can be used for such service planning.

Planning could be done using FS + IR we described
in Section 4. Using this, we can estimate whether a new
customer can be added and with what maximum rate plan.
If TDMA fails to find a schedule to accommodate the new
client and rate plan, there is not enough capacity to add the
client. Note that these calculations will provide some in-
sight but will not be exact. In fact, one benefit of APOLLO
is that it can tolerate temporary fluctuations caused due to
this inexact calculation, and the consequent transient con-
gestion in operational networks. However, FS + IR cannot
model variable link quality, complex interference relation-
ships (multi-way interference [7]), multiple gateways and
requires routes to be predefined.

A more general and thorough albeit heavyweight service
planning technique is through a linear program shown below
adapted from a general model in [11]. The WMN of N nodes
is modeled with a connectivity graph C whose vertices are
the mesh routers (Nc) and edges the wireless links (Lc) be-
tween the routers annotated with a link capacity (Cap ij)
calculated via offline network measurements. f ijk corre-
sponds to the amount of flow on link l ij for connection k.
To model download according to a rate plan, we use a multi-
commodity flow formulation with one connection for each
client from its best gateway. The set of gateways is S, set of
clients D, set of connections K (one per client). A virtual
sink node is linked to each existing client with a capacity
equal to the rate plan subscribed. This link is special and
does not cause interference. We also derive a conflict graph
of the network through measurement [21] in which each link
in Lc becomes a node and edges between nodes denote in-
terference. This is required by the LP to determine which

8APOLLO provides a bitrate guarantee similar to Cable/DSL and
while it improves delays, strict per-packet delay guarantees would
require more complex scheduling. It is not clear if it is practical to
implement fine-grained scheduling in multi-hop wireless networks.

links can be scheduled simultaneously (spatial reuse).
Given the above inputs, the LP below can check if adding

a new client at a specific location in the graph with a spe-
cific service plan is feasible as follows: A new client+plan is
added to the existing graph C with sinks denoting rate plans
of existing subscribers and the LP evaluated for feasibility to
admit the new client. The constraint in Eq. 1 is flow conser-
vation while the constraints in Eq. 2 say that the incoming
flow to sources is 0 while outgoing flow from destinations is
0. Eq. 3 disallows negative flows. Eq. 4 and Eq. 5 force
the LP to consider single-path routing (a common proto-
col semantic) since multiple network paths can have adverse
effects on TCP; and also indicate that the amount of flow
per link cannot exceed the link capacity. Eq. 6 provides a
lower bound on optimal throughput using the conflict graph
to determine which links can be scheduled together (details
in [11]). Hx in Eq. 6 defines a schedulable set of links that
can simultaneously be active and k’ is the number of schedu-
lable sets found. λx, 0 ≤ λx ≤ 1 denotes the fraction of time
allocated for set x, i.e. the links lij ∈ Hx. Finally, the LP
can also be used to model improvements (more radios, mesh
routers, gateways) to support the new client.

max
∑

s∈S

∑

lsi∈LC

fsik∀k ∈ K subject to :

∑

lij∈LC

fijk =
∑

lji∈LC

fjik, ni ∈ NC \ {ns, nd}, ∀k ∈ K

(1)
∑

s∈S

∑

lsi∈LC

fisk = 0
∑

d∈D

∑

ldi∈LC

fdik = 0, ∀k ∈ K (2)

fijk ≥ 0 ∀i, j, k | lij ∈ LC , k ∈ K (3)

∑

k∈K

fijk ≤ capij · zijk ∀i, j | lij ∈ LC , zijk ∈ {0, 1} (4)

At each node ni,
∑

zijk ≤ 1 (5)

k′∑

x=1

λx ≤ 1,
∑

κ∈K

fijk ≤
∑

lij∈Hx

λx · capij (6)

Note that link quality fluctuations are unavoidable in wire-
less networks and thus capacity may change over time. Link
fluctuations can be measured and characterized [8] to be
taken into account in service planning by considering av-
erage case/worst case performance of the link.

5.2 Admission Control
The second component in APOLLO’s design is rate-based

admission control. This component is fundamental in all
last-mile techniques such as cable and DSL. In APOLLO,
this is achieved in software since shared wireless media ac-
cess provides no built-in link-layer support for restricting

traffic from greedy clients. Hence, similarly as in all Internet
technologies, in APOLLO, each client’s traffic is restricted
at the client’s access mesh router to the client’s paid service
plan. If the client tries to send or receive more traffic than
that allowed by its service plan, this traffic will be dropped
at its access mesh router and it will not enter the WMN. An
immediate implication of this policy is that all packets that
enter the WMN backbone are “paid for” and should be de-
livered.

5.3 Priority Scheduling
The third component of APOLLO’s design is to address

unfairness that can occur when operating the network close
to capacity (Section 3) as well as due to channel variation,
loss and replacement of routes and external interference. In
these scenarios, APOLLO provides a reactive fair schedul-
ing without requiring a fine-grained time-slotting. The basic
premise is that since all packets on the backbone are “paid
for”, they should be handled with equal priority.

5.3.1 Key concept

The design of APOLLO’s lightweight distributed priority
scheduling is based on the key observation that while there
are many different causes of unfairness in a WMN environ-
ment (interference, fading, packet collisions, 802.11 backoff
algorithm), all of them typically result in a single symptom:
an increase in the queue length of the affected node. Rather
than identifying and attempting to cure the “disease” (which
is significantly harder to identify and address), APOLLO di-
rectly addresses the “symptom”, i.e. the queue length. An
increase in the queue length increases the average packet de-
lays and reduces the throughput. Finally when the queue be-
comes full, packets start being dropped. Hence, it is critical
to schedule packet transmissions in a way that will prevent
increases in the queue lengths. Following this guideline,
APOLLO prioritizes access to the wireless channel in each
interference neighborhood to nodes based on their queue
lengths, i.e., nodes that have higher queues receive trans-
mission priorities. This is done as follows: Each node is
made aware of the queue lengths of all other nodes with
which it interferes (we describe the way this information be-
comes available in the next section). If a node has the high-
est queue in its neighborhood, it acquires the channel and
starts transmitting packets. All other nodes defer their trans-
missions. As long as the information about the neighbors’
queue lengths is not outdated, all nodes in a neighborhood
will make the same decision on which node should trans-
mit; hence there will be no packet collisions. The node that
obtained the right to transmit will keep sending data pack-
ets reducing the length of its built-up queue, until the mo-
ment that some other node obtains a larger queue length. In
essence, APOLLO performs priority scheduling temporarily
when a node’s queue builds up but does not rely on any a pri-
ori schedule, which make implementation feasible. In addi-
tion, if the maximum queue in a neighborhood is small (un-

derutilized network), APOLLO behaves similarly to 802.11,
which works fine when utilization is low. Note that in some
corner cases, it is possible that APOLLO reduces spatial
reuse of the channel because of dependence among nodes
in overlapping interference neighborhoods, i.e., node A de-
fers to node B which defers to node C, but node A and C
could transmit together. While this is a bigger concern for
slot based scheduling algorithms [24] which assign turns ev-
ery cycle, APOLLO is less affected since queue backlogs
are typically transient and localized. Nonetheless, a solu-
tion such as an inactivity timer [24], i.e., a deferring node
that senses a channel free for some time can transmit, can be
used in APOLLO as well.

5.3.2 State dissemination

APOLLO requires nodes to maintain correct, up-to-date
information about their neighbors’ queue lengths. The de-
sign of state dissemination focuses on (i) to which nodes
this state is disseminated and (ii) what is the dissemination
mechanism.

Dissemination neighborhood Although a reasonable an-
swer to the first question seems to be “as many nodes as
possible”, such a choice is both impractical and incorrect.
First, we want information to be propagated quickly, so that
all nodes make a correct decision as soon as possible. Sec-
ond, propagating information beyond an interference region
might harm throughput. For example, if all nodes in the net-
work know each other’s queue lengths, then there will be
only one node transmitting in the whole network, thus not
exploiting spatial reuse. Hence, information should only be
propagated to nodes within an interference region. Nodes
that belong in different interference regions make different
decisions. The goal is that at any given time, each inter-
ference region should have a winner node that transmits, ex-
ploiting spatial reuse at the maximum degree, while prevent-
ing collisions.

Unfortunately, identifying an interference region is not a
simple task. The most common solution is to assume that
all nodes within a k-hop distance interfere with each other,
where k is a tradeoff between the probability of interference
and channel utilization. [24] uses a 2-hop interference re-
gion. However, their simulation model is not realistic, since
they only used the two-ray propagation model, without sim-
ulating any channel variability (noise, fading, etc.). As we
saw in Section 4, with a more realistic physical model, even
nodes in a 3-hop distance can interfere. We have also veri-
fied it experimentally in our 32-node testbed [7]. Hence, in
APOLLO we use a 3-hop interference neighborhood. While
this is a heuristic, it makes the system practical. Measur-
ing continuously changing interference patterns is impracti-
cal and is difficult to perform online.

Dissemination mechanism APOLLO uses two CONTROL
messages: BEACON and LEAVE messages. The BEA-
CON message broadcast every 200ms9 contains the node’s

9This value was obtained after experimental sensitivity analy-

current queue length, a sequence number used for recency
information and a TTL value initialized to 3 to implement
the 3-hop interference neighborhood. To reduce overhead,
BEACONs are sent only if the difference between current
queue size and the last advertised queue size is more than
5% of the maximum queue size.

While BEACONs allow nodes in an interference neigh-
borhood to periodically evaluate all the queue lengths and
decide who should transmit for the next period, the win-
ning node may finish all its packets before the next BEA-
CON exchange. To minimize idle time, whenever a node
that is currently transmitting has no more packets to send,
it initiates a LEAVE message. LEAVE messages are also
broadcast in a 3-hop neighborhood. Each node receiving a
LEAVE message, updates the queue length of the node that
initiated the LEAVE to 0, and then it decides to transmit if
its queue has become the largest one. The problem is that the
moment a node receives a LEAVE message, the information
it has for all other nodes is outdated; it is what the node had
learnt in the last BEACON exchange phase. For this reason,
upon receiving a LEAVE message, a node in addition to re-
broadcasting it, also piggybacks its current queue length in
the packet. Since decisions to transmit/defer are remade on
every LEAVE/BEACON message receipt, wrong decisions
because of incomplete or outdated information are corrected
soon.

Since recency is important for BEACON and LEAVE mes-
sages, these packets have higher priority than data packets.
One approach is to transmit them immediately using 802.11
broadcast. However, since 802.11 broadcast uses no control
packets such as RTS/CTS/ACK and transmits each packet
only once, the CONTROL packets will likely be lost due to
collisions with other CONTROL or data packets. For this
reason, we use a separate channel to transmit BEACON and
LEAVE messages. Using a separate control channel and
radio potentially wastes the capacity of the WMN. How-
ever, we argue the control radio is justified for a number
of reasons: (1) When WMNs are deployed as operational
commercial networks, there is a need to separate the con-
trol and data plane which enables real operation and man-
agement of WMNs and will probably be required in most
cases so that network debugging, code updates, interference
measurements, channel assignment, etc can be done without
hurting paid customer traffic. (2) Additionally, this single
control radio can be used to provision a system with multiple
data radios (which are commonly available). For multiple
data radios, BEACON messages now will contain a vector
of the queues on each radio of a node and a LEAVE message
has to specify for which radio it has been sent. (3) Finally,
many newly proposed protocols ([30], [26], [22]) for WMNs
require a control radio which can be leveraged by APOLLO.

As a side note, we did try other priority schemes based
on queue lengths such as prioritizing nodes based on DIFS
and backoff [1], before converging to our final scheme. We

sis [27].

APOLLO
Signaling
Module

. . .ADM ADM ADM

Driver 1 Driver 2 Driver n

Q1 Q2 Qn

DR1 DR2 DRn CR

. . .

. . .

User

Kernel

Admission
Control
Module

Driver

Figure 4: APOLLO architecture.

also tried a scheme where a node’s decision on transmitting
or not is not discrete (the node transmits if it has the largest
queue) but continuous, i.e., based on the queue length a node
decides to transmit with probability P , and P is higher for
nodes with larger queues. None of these schemes worked
efficiently in resolving contention, because they are proba-
bilistic [29]. Essentially, probabilistic schemes did not re-
spond fast enough to alleviate congestion and resulted in
lower throughput due to delays and packet drops.

5.4 Implementation
We implemented APOLLO in Linux 2.6.8. The APOLLO

architecture is shown in Figure 4. The two main functions of
APOLLO are admission control (implemented by the APOLLO
Admission Control Module (AACM)) and priority schedul-
ing (implemented by the APOLLO Signaling Module (ASM)
and the APOLLO Driver Modules (ADMs) (one for each ra-
dio)). As mentioned in Section 5.3.2, control messages are
sent through a different radio. In Figure 4, we denote it by
CR (Control Radio) to distinguish it from the radios used for
data (DRs).

APOLLO Admission Control Module While admission
control according to rate plans can be implemented using the
tc utility (http://lartc.org/howto/), we perform this function
using our own user-space module because: (1) Backlog in
the actual device queue is used for deciding scheduling pri-
ority. So packets sent exceeding the service rate should not
be allowed to fill that queue and thus should be blocked in
user-space. (2) We can implement rate plans across multi-
ple radios easily by doing it in user-space. The AACM at
the access mesh router uses libipq and Netfilter to perform
packet capturing and rate limiting for outgoing packets for
associated clients according to a service plan. Similarly, in-
coming flows to a client from multiple sources can be limited
in aggregate similarly. However, the flows must be respon-
sive to loss (i.e. TCP) so that packets that will be ultimately
dropped at the destination (due to the destination’s incoming
admission control) in the WMN slow down the sending rate
at the sources. This means that only TCP or TCP-friendly
traffic will be allowed to enter the mesh: we argue this re-
striction is necessary given the bandwidth scarce operational
environment and does not preclude many applications. To
handle mobility, each client is identified by its MAC address

on sign-up and the client’s plan is made known to all mesh
routers. Thus, if a client moves and associates with a dif-
ferent mesh router, the admission control functionality is en-
abled at the new access mesh router.

APOLLO Signaling Module The ASM decides when
the driver should transmit or defer, and exchanges queue
length information through BEACON and LEAVE messages.
ASM reads the queue length by communicating with the ker-
nel. For each packet being transmitted from the IP layer, the
dev queue xmit() procedure is called. It queues a packet in
the qdisc associated with the output interface, determined by
routing. Then, if the device is not stopped, all packets in the
qdisc are handled by qdisc restart(), which finally calls the
hard start xmit() method, implemented in the driver code.
ASM uses the number of backlogged packets in the qdisc
to decide if the card should transmit or not, and in sending
LEAVE and BEACON messages.

APOLLO Driver Module The ADM consists of changes
to drivers to support APOLLO transmit/defer decisions and
are driver-specific. To make APOLLO portable across drivers
we made the interface of the ADM and ASM very simple:
ADM for each interface communicates (through the /proc
file system) with ASM and applies the decisions made by
the ASM on whether this particular interface should trans-
mit or not. When in deferred state, ADM blocks the kernel
from calling hard start xmit() using netif stop queue() and
when transmitting, netif wake queue() is called to allow the
kernel to call hard start transmit() and send packets to the
wireless card. In this paper we used the madwifi driver [18].
Similar modifications can be easily done in any other driver.

6. EXPERIENCE WITH APOLLO
In this section, we describe our performance experience

with the Apollo system. We first evaluate APOLLO us-
ing the Qualnet simulator in Section 6.1, in order to un-
derstand its behavior in a controlled environment (with con-
trolled node positions, distances, channel conditions, etc).
Next, in Section 6.2, we evaluate the APOLLO implementa-
tion in our testbed.

6.1 Simulation Evaluation
We first evaluate APOLLO in two simple scenarios using

the 5-node chain of Figure 1 by comparing it with 802.11
and FS + IR from Section 4. We then evaluate its perfor-
mance in more general topologies, comparing it with 802.11.

For our simulations we use the Qualnet simulator [23].
In all the scenarios the two-ray propagation model is used.
For realism, we added random noise creating 10-15% loss
in each link. Each simulation was averaged over 10 runs
and UDP transport10 was used. The nominal bit rate in both
channels is 2Mbps11. The transmission range is set to 250m.

10We use UDP to demonstrate the capacity available at the MAC
layer under a given protocol. The fact that TCP may not be able
to attain the MAC layer capacity due to inefficiencies operating in
multi-hop wireless is an orthogonal transport layer design issue.

11The bit rate chosen is simply to demonstrate results. We could

0

20

40

60

80

100

120

140

1 2 Avg
flow

T
h

ro
u

g
h

p
u

t
(K

b
p

s
)

802.11 FS+IR APOLLO

(a) Throughput

0

1

2

3

4

5

6

1 2 Avg
flow

A
v

e
ra

g
e

 p
a

c
k

e
t

d
e

la
y

 (
s

e
c

)

802.11 FS+IR APOLLO

(b) Average packet delay
Figure 5: Performance comparison of 2 asymmetric flows in a 5 node

chain chain for 802, FS + IR and APOLLO.

0

20

40

60

80

100

120

140

1 2 Avg
flow

T
h

ro
u

g
h

p
u

t
(K

b
p

s
)

802.11 APOLLO

(a) Throughput

0
1
2
3
4
5
6
7
8
9

10

1 2 Avg
flow

A
v

e
ra

g
e

 p
a

c
k

e
t

d
e

la
y

 (
s

e
c

)

802.11 APOLLO

(b) Average packet delay
Figure 6: Performance comparison of 2 symmetric flows in a 5-node

chain for 802.11 and APOLLO.

For all the experiments, LQSR [9] is used as the routing pro-
tocol. The service plans used in all scenarios are made sure
to be achievable according to Section 5.1.

6.1.1 Chain topologies

Asymmetric flows We first use the scenario of Figure 1
with the two asymmetric flows initiated by 2 clients, A and
C to gateway E. Each flow has a service plan of 140Kbps.
Note that these flows traverse multiple hops and interfere so
the overall capacity required to support these clients is close
to 1Mbps which roughly corresponds to the actual transport
layer throughput obtained on a 2Mbps 802.11 link.

Figure 5 shows that the performance of APOLLO is al-
most as good as the performance of the optimal FS + IR
protocol. Both flows achieve throughputs equal to 139Kbps.
Hence APOLLO provides to both clients the service they
paid for, without the fine-grained synchronization required
for the TDMA-based FS + IR. Of course, this lack of fine-
grained synchronization affects the average packet delay and
APOLLO cannot achieve packet delays as low as FS + IR.
However, compared to the off-the-shelf approach, APOLLO
improves the average packet delay over both flows by a fac-
tor of 6.

Symmetric flows We now evaluate APOLLO under a
scenario consisting of two symmetric flows (equal distance
away from the gateway) in the same chain topology with
node C now as the gateway and nodes A and E with a 140Kbps
service plan sending packets to node C.

also choose a higher bit rate 11Mbps and correspondingly a higher
rate service plan or a large number of clients.

0

8

16

24

32

40

48

56

64

1 2 3 4 5 Avg
flow

T
h

ro
u

g
h

p
u

t
(K

b
p

s
)

802.11 APOLLO

(a) Throughput

0

2

4

6

8

10

12

14

16

1 2 3 4 5 Avg
flow

A
v

e
ra

g
e

 p
a

c
k

e
t

d
e

la
y

 (
s

e
c

)

802.11 APOLLO

(b) Average packet delay
Figure 7: Performance comparison of 802.11 and APOLLO in a P2P

scenario.

The results in Figure 6 show that, as opposed to the asym-
metric scenario, in this case 802.11 is fair, and each flow
achieves a throughput of 74Kbps. However, the achieved
throughputs are still very far from the service the two clients
require – 140Kbps. On the contrary, APOLLO provides
again a close to optimal service to both flows, with a through-
put of 139Kbps. Also, the average packet delay with APOLLO
is 23 times lower than with 802.11. 802.11 suffers from hid-
den terminal 12 problem in this case while APOLLO is not
affected by it since it coordinates the nodes based on queue
lengths.

6.1.2 Large networks

We now evaluate the performance of APOLLO in a large
network of 49 nodes forming a grid topology in a 1500 ×
1500m2 area. Again the distance between any two nodes is
such that each node is in transmission range with its 1-hop
neighbors, but not with its 2-hop neighbors.

P2P traffic This topology consists of 5 flows with ran-
domly selected distinct sources and destinations , F1 – F5,
each with a 64Kbps service plan.

The performance results in Figure 7 show that APOLLO
achieves the client’s service plan. On the other hand, 802.11
fails in providing the service plan with F1, F2 and F4 un-
happy. The starved flows also have high delays due to which
the average delay under 802.11 is 9 times larger than APOLLO.

Flow F3 is physically far from the other flows and thus it
is relatively unaffected, achieving the maximum throughput,
while F5 captures the channel more frequently than F4 with
which it is intersected, resulting in performance degradation
for F4. Also, flows F1 and F2 interfere with each other,
and with F4, and this results in low throughput and high
packet delays for both of them. On the other hand, APOLLO
can arbitrate better whenever such capture and competition
occur in each competing neighborhood.

Download from the gateway This is the most common
scenario in a WMN, where clients download traffic from the
Internet through the gateway. In this case we have placed the
gateway at the center of the network. We have 4 download
flows in a cross-shape from the gateway to 4 different clients.
Two of these flows travel two hops and the other two travel

12We shut off RTS/CTS as do many operational networks [9, 2, 28].

0

10

20

30

40

50

60

70

80

1 2 3 4 Avg
flow

T
h

ro
u

g
h

p
u

t
(K

b
p

s
)

802.11 APOLLO

(a) Throughput

0

0.5

1

1.5

2

2.5

3

1 2 3 4 Avg
flow

A
v

e
ra

g
e

 p
a

c
k

e
t

d
e

la
y

 (
s

e
c

)

802.11 APOLLO

(b) Average packet delay
Figure 8: Performance comparison of 802.11 and APOLLO in a

download scenario.

0

10

20

30

40

50

1 2 3 4 Avg
flow

T
h

ro
u

g
h

p
u

t
(K

b
p

s
)

802.11 APOLLO

(a) Throughput

0

5

10

15

20

25

30

35

40

1 2 3 4 Avg
flow

A
v

e
ra

g
e

 p
a

c
k

e
t

d
e

la
y

 (
s

e
c

)

802.11 APOLLO

(b) Average packet delay
Figure 9: Performance comparison of 802.11 and APOLLO in an

upload scenario.

three hops. Each client has a plan of 80Kbps.
This scenario is less stressing on the MAC layer, since

contention is primarily near the source, but not near the re-
ceivers of the 4 flows. Since the gateway transmits received
packets from the Internet in FIFO order, it fairly schedules
its transmissions for all four flows. The results in Figure 8
show that with APOLLO, all four clients get exactly what
they pay for. With 802.11 there is less unfairness compared
to the P2P scenarios and no flow starves, but the two 2-hop
flows (F2 and F3) achieve higher throughput than the two
3-hop flows (F1 and F4). Although its performance is im-
proved, 802.11 still fails to provide the requested service.
Also, the average packet delays are 2-4 times larger with
802.11 than with APOLLO.

Upload to the gateway This scenario is the inverse of
that in the previous paragraph, where clients send traffic to
the gateway. Note that this is the most difficult scenario to
handle, since contention (i.e. number of senders) increases
as packets from all four flows travel towards their common
destination. Since, in general, upload traffic is expected to
be lower than download, in this scenario each of the 4 clients
has a 50Kbps service plan.

The results in Figure 9 show that 802.11 completely fails
in this scenario. All four flows starve getting throughputs
lower than 8Kbps, only 16% of their service plan. Also, in
Figure 9(b) we observe that the average packet delays are
extremely high for all four flows, varying between 15 sec
and 40sec. On the other hand, APOLLO can fairly deal even
with this challenging scenario. All four flows receive simi-
lar throughputs, 45-46Kbps, very close to the service plan,

2nd Floor Level 3rd Floor Level

M E

M SEE

PHYSICS

EE

20

50m
Scale

28

19

18

32

10

9

12

31

15

2

25
4

14

22

13

5

11

8

16

23

1

17

6

7
3

29

34

27

30
26

24

Figure 10: Top view of the MAP testbed topology.

and delays are 13 to 28 times lower compared to 802.11.
Since the queues of all 4 nodes around the gateway are built
equally fast (all flows have the same rate), APOLLO as-
signs transmission rights to them in a round-robin fashion,
eliminating collisions. On the other hand, with 802.11 all
nodes compete for the channel, but without any coordina-
tion and this finally results in large packet delays, due to
exponentially increased backoff times and many retransmis-
sions, and finally to packet drops, since queues are gradually
being filled.

6.2 Testbed Evaluation
We now evaluate APOLLO on our wireless network testbed

MAP [34], shown in Figure 10. MAP currently consists
of 32 mesh routers (small form factor desktops) spread out
across four academic buildings on the Purdue campus (EE,
MSEE, PHYSICS and ME). Each router has two radios. Each
radio is attached to a 2dBi rubber duck omnidirectional an-
tenna with a low loss pigtail to provide flexibility in antenna
placement. Each mesh router runs Mandrake Linux 10.1 and
the open-source madwifi drivers are used to enable the wire-
less cards. IP addresses are statically assigned. The testbed
deployment environment is not wireless friendly, having floor-
to-ceiling office walls instead of cubicles as well as some
laboratories with structures that limit the propagation of wire-
less signals. We used channels 1 and 11 of 802.11b to op-
erate our network since they provide the largest frequency
separation. Autorate is turned on. The routes used in all sce-
narios have been found by OLSR [5] using the ETX metric.

We evaluate APOLLO in various scenarios and report our
experience.

Dominant flow scenario In this scenario, we assume node
1 is the gateway and nodes 22 and 16 generate traffic to
node 1. Node 22 can reach node 1 through a 2-hop path
(22 → 13 → 1) while node 16 can reach node 1 directly.
We assume that clients that use node 22 as their access mesh

router can be supported at an aggregate rate of 400Kbps and
clients that use node 16 can be supported at an aggregate rate
of 450Kbps. We emulate this scenario by generating two
UDP flows F1 (400Kbps service plan) and F2 (450Kbps
service plan), from nodes 22 and 16 to 1, respectively, using
iperf.

The results in Figure 11(a)(b)(c) show that when clients
transmit data close to their service plan in 802.11, F2 can
achieve throughput equal to the service plan of 450Kbps, but
F1 receives only 339Kbps. The reason is that F2 is a 1-hop
flow, while F1 is a 2-hop flow. Moreover, from Figure 10
we observe that node 16 is closer to the destination (node 1)
than node 13 (the intermediate hop of flow F1). Hence, node
16 can capture the channel more frequently than node 13,
which also suffers higher packet loss. On the other hand with
APOLLO, we observe that both flows achieve throughputs
almost equal to their service plans (398Kbps and 447Kbps,
respectively). APOLLO detects that node 13 has a larger
queue than node 16 and allows it to transmit when it experi-
ences a queue backlog. APOLLO is similar to 802.11 when
the plans are underutilized (with sending rate 50Kbps) and
better than 802.11 if clients are able to send more than their
service plan (with sending rate 800Kbps).

Balanced-flows scenario In this scenario we have two
2-hop UDP flows, F1 (11 → 5 → 28) and F2 (20 → 18 →
28), each of which has a service plan of 300Kbps. However,
now both flows have equal number of hops.

The results in Figure 11(d)(e)(f) also show that with 802.11,
when the clients transmit close to their service plan, flow
F1 achieves a throughput equal to the service plan, while
flow F2 achieves a throughput of 244Kbps, 81% of the ser-
vice plan. Thus, unfairness can also manifest between flows
of similar hop-lengths due to link quality differences. With
APOLLO, the unfairness becomes much smaller and the two
flows achieve throughputs of 292Kbps and 284Kbps, respec-
tively, or 97.3% and 94.6% of their service plans. Again,
APOLLO is similar to 802.11 when the plans are underuti-
lized (with sending rate 50Kbps) and better than 802.11 if
clients are able to send more than their service plan (with
sending rate 600Kbps).

TCP upload While there have been many attempts to
build new transport protocols for multi-hop wireless networks,
TCP is still predominantly deployed in operating systems
used on clients and mesh routers. We thus measured TCP
performance as part of a service plan. We used three flows
F1 (Node 1 → 28 with route 1-16-24-28), F2 (Node 16 →
28 with route 16-24-28) and F3 (Node 24 → 28 with route
24-28).

Table 1 shows the performance of these flows when up-
loading to gateway node 28 individually under 802.11, com-
bined under 802.11, and combined under APOLLO with a
service plan. The results show that when the TCP flows from
the 3 clients run together in 802.11, F1 is almost shut off.
However, APOLLO is able to enforce a rate plan of 256Kbps
at each node. Thus, in this scenario, APOLLO allows multi-

0
50

100
150
200
250
300
350
400
450
500

802.11 ApolloProtocol

T
h

r
o

u
g

h
p

u
t

(k
b

p
s

)

F1 F2

(a) A (Overutilized)

0
50

100
150
200
250
300
350
400
450
500

802.11 ApolloProtocol

T
h

r
o

u
g

h
p

u
t

(k
b

p
s

)

F1 F2

(b) A (Close to plan)

0

10

20

30

40

50

802.11 ApolloProtocol

T
h

r
o

u
g

h
p

u
t

(k
b

p
s

)

F1 F2

(c) A (Underutilized)

0

50

100

150

200

250

300

350

802.11 ApolloProtocol

T
h

r
o

u
g

h
p

u
t

(k
b

p
s

)

F1 F2

(d) B (Overutilized)

0

50

100

150

200

250

300

350

802.11 ApolloProtocol

T
h

r
o

u
g

h
p

u
t

(k
b

p
s

)

F1 F2

(e) B (Close to plan)

0

10

20

30

40

50

802.11 ApolloProtocol

T
h

r
o

u
g

h
p

u
t

(k
b

p
s

)

F1 F2

(f) B (Underutilized)
Figure 11: Throughput comparison of 802.11 and APOLLO in A: dominant flow, and B: balanced flow scenario.

Auto upload (Kbps) Auto download (Kbps)
802.11 802.11 A-256k 802.11 802.11 A-300k

self comb. plan self comb. plan
F1 274 38 255.2 295 89 293.4
F2 1061 356 256.1 1001 455 297.1
F3 1887 1100 256.1 1765 1200 298.3

Table 1: Throughput achieved by three flows F1, F2 and F3 from a

gateway by themselves, combined, and with APOLLO. A-xk refers to

an APOLLO x Kbps plan.

hop TCP flows from clients to achieve their service plans.
TCP download We repeated the experiment for the case

of downloading from the gateway node. In this case, the
three flows are reversed. Again the results in Table 1 shows
that APOLLO can support a service plan of 300Kbps at each
mesh router thus supporting up to 9 clients with plans of
100Kbps. Unlike in 802.11, APOLLO can allocate service
to clients more flexibly, e.g. support more clients at mesh
router 1 if needed by reducing clients elsewhere.

Link failure APOLLO has the ability to deal with tempo-
rary fluctuations in performance due to route recomputation,
external interference, and fading. We emulate such a sce-
nario by injecting a transient link failure artificially in the
driver. For this experiment, we sent two UDP flows, from
nodes 16 and 22 to node 13, both one hop away from 13.
We assume both mesh routers have clients generating traffic
of 700Kbps. When running simultaneously, the two flows
could both get this throughput. We artificially disturbed the
link 22 → 13 multiple times during a 70 second period. In
both cases, the throughput of node 16 remained unaffected,
but throughput of node 22 was different under 802.11 and
APOLLO. With 802.11, node 22 achieved only 433Kbps or
62% of its service plan, while with APOLLO the throughput
was 657Kbps, or 93% of its service plan. The reason for this
difference is as follows. In the intervals following the fail-
ures, APOLLO notices that node 22 has a large queue length
and it gives it transmission rights for most of the time, allow-
ing it to send the queued packets. The fact that throughput
of node 16 is not reduced shows that the capacity is enough
for both nodes to achieve 700Kbps. In spite of that, node
22 cannot recover with 802.11. In this case, 802.11 does not
take into account the queue built in node 22, and lets the two
nodes contend for the channel in the normal link operation
intervals. This results in time wasted due to collisions and

backoffs, and finally does not give node 22 sufficient time to
recover from the failures.

Caveat APOLLO does not guarantee that a TCP flow reaches
the bandwidth prescribed by the service plan. APOLLO re-
lies on increased queue length as a symptom. If there are
many losses due to interference or bad links, some TCP
flows may be unable to increase their window. Similar prob-
lems with TCP flows cause low gain from network coding [14].
This is not a problem per se with the MAC layer capacity
allocated by APOLLO, but that TCP does not achieve the
underlying bandwidth made available. Reducing transport
layer unfairness in lossy scenarios remains a place where
further research is needed. APOLLO provides an environ-
ment where a better designed transport protocol (which can
for example distinguish random packet losses from conges-
tion) can achieve good performance.

7. RELATED WORK
There is a lot of work on priority scheduling in wireless ad

hoc networks [1, 12, 13, 31]. In [1], three schemes varying
different parameters of 802.11 MAC protocol are compared:
backoff interval, DIFS, and maximum frame length and the
DIFS-based scheme is found to perform well in noisy en-
vironments. Another backoff-based priority scheme is de-
scribed in [12, 13] which piggybacks the priority tag of a
node’s head-of-line packet onto RTS and data packets. Nodes
use information about priorities of all flows in a 2-hop neigh-
borhood to set their backoff. Finally [31] proposes to use
uses two narrow-band busy tone signals (BT1 and BT2) to
ensure medium access for high priority stations. DIFS pe-
riods of high/low priority stations are set accordingly to en-
sure that low-priority stations in a 2-hop neighborhood will
hear BT1 or BT2 before they try to transmit a packet and
will defer. In all these works, priorities of different flows are
statically assigned based on QoS requirements, while in our
case priorities change dynamically, based on queue lengths,
in order to achieve a fair service. Hence our scheduling has
a more challenging objective, namely to avoid starvation of
any flow, as opposed to differentiation mechanisms where
the goal is to ensure that high-priority flows will not starve
because of a low-priority flow. Moreover, all these schemes
are probabilistic and they cannot effectively provide service
plans as explained in Section 5.3.

Several works exist on fair scheduling in multihop wire-
less networks, e.g., [15, 16, 17, 10, 25, 24]. In [15, 16, 17],

fair queuing to maximize spatial reuse while ensuring a min-
imum fair bandwidth allocation for each flow is proposed.
The algorithms are centralized and suffer from many of the
problems related to TDMA. A core node is required to cal-
culate/propagate the schedule. Moreover, the schedule needs
to be recalculated every time a flow comes or leaves the net-
work. In [17], a distributed approach to the fair queuing
problem is proposed which is backoff-based (probabilistic),
and hence it is not guaranteed that it will perform well in re-
alistic, noisy environments [29]. Also, the fairness model is
different and there is no implementation evaluation.

In [10], per-mesh-router (TAP) fairness and a per-TAP
fairness scheduling is proposed in which adjacent TAPs ex-
change periodically information about offered load and link
capacities which is used to compute the time shares of dif-
ferent flows on each link and enforce the estimated time
shares using rate limiting. The algorithm is only evaluated
using simulations and assuming perfect information on of-
fered loads and link capacities. In practice it is not easy to
propagate this information, especially when network condi-
tions change rapidly. In contrast, APOLLO requires much
less information to be propagated (queue lengths) and we
demonstrate its efficiency through a testbed implementation.
Additionally, per-TAP fairness does not allocate per-client
service plans. The only work that considers a per-mesh-
client fairness model is Fair Scheduling (FS) [25], which
we described in Section 4. This algorithm also has the same
practical problems as TDMA (Section 4).

All the previous algorithms were evaluated only using sim-
ulations in ideal environments. Overlay MAC Layer (OML)
in [24] provides an implementation. OML uses a TDMA-
like solution, in which time is divided in slots (with a coarser
time granularity) and slots are allocated to nodes accord-
ing to a WFQ policy, using pseudo random hash functions.
OML still suffers from the same problems as TDMA, which
we described in Section 4.3. The weights depend on the
number of flows, the routing paths used and the type of traf-
fic used. Hence it is very hard or even infeasible (in case of
P2P traffic or auto rate adaptation) to assign weights to the
nodes in order to support given service plans. In [4], the au-
thors identify severe unfairness between flows in mesh net-
works. They found that rate limiting improves the fairness
of TCP flows. In our work we implement admission control
as one of the basic components of APOLLO, and we show
that it alone cannot always guarantee a fair service.

8. CONCLUSIONS
This work argues that a “bitrate-for-bucks” service model

is key to the successful adoption of WMNs as a last-mile
technology. We demonstrate that neither an off-the-shelf
approach nor an optimal scheduling approach are viable in
providing such a service. We then propose, design, imple-
ment, and evaluate APOLLO, a system that implements ser-
vice provisioning. We believe this work addresses a critical
challenge in the deployment and management of WMNs.

9. REFERENCES
[1] I. Aad and C. Castellucia. Differentiation mechanisms for ieee 802.11. In Proc.

of IEEE Infocom, 2001.
[2] J. Bicket, D. Aguayo, S. Biswas, and R. Morris. Architecture and evaluation of

an unplanned 802.11b mesh network. In Proc. of ACM MobiCom, 2005.
[3] C. Bron and J. Kerbosch. Algorithm 457: Finding all cliques of an undirected

graph. Commun. ACM, 16, 1973.
[4] J. Camp, J. Robinson, C. Steger, and E. Knightly. Measurement driven

deployment of a two-tier urban mesh access network. In Proc. of ACM Mobisys,
2006.

[5] T. Clausen, P. Jacquet, C. Adjih, A. Laouiti, P. Minet, P. Muhlethaler,
A. Qayyum, and L.Viennot. Optimized link state routing protocol (OLSR). RFC
3626, Oct 2003.

[6] D. S. J. D. Couto, D. Aguayo, J. C. Bicket, and R. Morris. A high-throughput
path metric for multi-hop wireless routing. In Proc. of ACM MobiCom, 2003.

[7] S. M. Das, D. Koutsonikolas, Y. C. Hu, and D. Peroulis. Characterizing
multi-way interference in wireless mesh networks. In Proc. of ACM WiNTECH
2006, 2006.

[8] S. M. Das, H. Pucha, K. Papagiannaki, and Y. C. Hu. Studying wireless routing
link dynamics. In Proc. of IMC, 2007.

[9] R. Draves, J. Padhye, and B. Zill. Comparison of routing metrics for static
multi-hop wireless networks. In Proc. of ACM SIGCOMM, 2004.

[10] V. Gambiroza, B. Sadeghi, and E. W. Knightly. End-to-end performance and
fairness in multihop wireless backhaul networks. In Proc. of ACM MobiCom,
2004.

[11] K. Jain, J. Padhye, V. Padmanabhan, and L. Qiu. Impact of interference in
multihop wireless network performance. In Proceedings of ACM Mobicom,
2003.

[12] V. Kanodia, C. Li, A. Sabharwal, B. Sadeghi, and E. W. Knightly. Distributed
multi-hop scheduling and medium access with delay and throughput
constraints. In Proc. of ACM Mobicom, 2001.

[13] V. Kanodia, C. Li, A. Sabharwal, B. Sadeghi, and E. W. Knightly. Distributed
priority scheduling and medium access in ad hoc networks. ACM Wir. Ntws., 8,
2002.

[14] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Medard, and J. Crowcroft. Xors in the
air: Practical wireless network coding. In Proc. of ACM SIGCOMM, August
2006.

[15] H. Luo and S. Lu. A topology-independent fair queueing model in ad hoc
wireless networks. In Proceedings of IEEE ICNP, 2000.

[16] H. Luo, S. Lu, and V. Bharghavan. A new model for packet scheduling in
multihop wireless networks. In Proc. of ACM MobiCom, 2000.

[17] H. Luo, P. Medvedev, J. Cheng, and S. Lu. A self coordinating approach to
distributed fair queueing in ad hoc wireless networks. In Proceedings of IEEE
Infocom, 2001.

[18] madwifi. http://madwifi.org.
[19] R. Nelson and L. Kleinrock. Spatial TDMA: A colllision-free multihop channel

access protocol. IEEE Transactions on communications, 33(9), 1985.
[20] M. Neufeld, C. Doerr, J. Fifield, T. Weingart, D. C. Sicker, and D. Grunwald.

Multimac: An adaptive mac framework for dynamic radio networking. In Proc.
of DySPAN, 2005.

[21] J. Padhye, S. Agarwal, V. Padmanabhan, L. Qiu, A. Rao, and B. Zill. Estimation
of Link Interference in Static Multi-hop Wireless Networks. In Proceedings of
IMC, 2005.

[22] Y. Qu and A. Srinivasan. Multi-channel olsr with dedicated control interface. In
Proc. of SPECTS, 2006.

[23] QualNet. http://www.scalable-networks.com.
[24] A. Rao and I. Stoica. An overlay mac layer for 802.11 networks. In Proceedings

of Mobisys 2005, April 2005.
[25] N. B. Salem and J.-P. Hubaux. A fair scheduling for wireless mesh networks. In

Proc. of WiMesh, 2005.
[26] J. Shi, T. Salonidis, and E. W. Knightly. Starvation mitigation through

multi-channel coordination in csma multi-hop wireless networks. In Proc. of
ACM MobiHoc, 2006.

[27] S.M.Das, D. Koutsonikolas, and Y.C.Hu. Practical Service Provisioning for
Wireless Meshes. Technical report, TR-ECE, Purdue University, November
2007.

[28] A. P. Subramanian, M. M. Buddhikot, and S. C. Miller. Interference Aware
Routing in Multi-Radio Wireless Mesh Networks. In Proc. of WiMesh, 2006.

[29] N. Vaidya and P. Bahl. Fair scheudling in broadcast environments. Technical
report, TR-99-61, Microsoft Research, Dec 1999.

[30] S.-L. Wu, C.-Y. Lin, Y.-C. Tseng, and J.-P. Sheu. A new multi-channel mac
protocol with on-demand channel assignment for multi-hop mobile ad hoc
networks. In Proc. of I-SPAN, 2000.

[31] X. Yang and N. H. Vaidya. Priority scheduling in wireless ad hoc networks. In
Proceedings of ACM Mobihoc, 2002.

[32] Champaign-Urbana community wireless network.
http://www.cuwireless.net.

[33] MIT Roofnet. http://www.pdos.lcs.mit.edu/roofnet.
[34] http://www.engineering.purdue.edu/MESH.
[35] Seattle wireless. http://www.seattlewireless.net.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

