Tutorial Intro:
Secure and Friendly Deployment (Plugging) of NDN Apps

Alex Afanasyev (FIU)

Tutorial: Power of Trust Schemas for Easy and Secure Deployment of NDN Applications
Named Data Networking as a New Paradigm

• Named Data Networking (NDN) can bring great benefits to applications
 • Directly using application data names to communicate
 • Built-in security support that secures named data directly
 • stateful dataplane with in-network caching: multipath forwarding, multicast delivery
Setting up NDN Apps

• One builds a new app, how to make it function?
 • How to bootstrap an app into the network?
 • What, where, and by whom need to be configured?
 • Putting everything on the same table: what steps to take?

• One builds a distributed app to run over multiple remote computers
 • How to securely configure remote NDN boxes?

The need for plug in order to play
Looking Back on IP Configuration

• Plug in IP networking: establish IP connectivity on a specific IP subnet
 • IP address, subnet mask, default gateway
 • DHCP automates the last step of configuring individual host
 • Network operators manually configure IP address block and subnet mask into DHCP servers

• To enable application communications
 • Need names
 • Network operators also configure DNS resolver address into DHCP servers
 • Need security support
 • PKI “trust” based on OS and browser vendors decisions to trust PKI CAs “on behalf” of users
NDN Configuration

• Plug in NDN networking: establish <what>? IP connectivity on a specific IP subnet
 • IP address, subnet mask, default gateway
 • DHCP automates the last step of configuring individual host
 • Network operators manually configure IP address block and subnet mask into DHCP servers
 • NDN apps are NDN network entities, so they are need to be bootstrapped / plugged in / (auto) configured!

• To enable application communications
 • Need names
 • Need security support
Network Model of NDN

- A networked system is made of **named entities**
 - Entities are anything produce and/or consume immutable named packets
 - services / application instances
 - Entity names are decoupled from network attachment points
 - Entity can explore available connectivity to communicate on their own

- There exist various **trust relations** among the named entities
 - Hierarchical
 - Peer-to-peer
NDN Config === NDN App Config

• Where an entity obtains its **name** and **security credentials**
• How the initial **trust relations** are configured into the entity
What About Connectivity?

• Yes, NDN entities also need to establish connectivity among each other to let NDN packets flow
 • an entity can express Interests and they will flow towards the data
 • an entity can attract Interests if it has matching data to publish

• Multiple options to establish NDN connectivity
 • forwarding state
 • forwarding strategy
 • routing state
 • overlay tunnels

Physical links are **necessary** but not **sufficient** for NDN connectivity
(same as with IP)
With Names & Security, Connectivity Can be Setup

A number of tools have been developed to help set up NDN connectivity

- **NDN Routing**
 - Exchange *secured name* prefix information and builds routing state (proactively)
- **Auto-prefix propagation / prefix readvertise**
 - Automated means to push forwarding/routing state to attract interests
- **Self-Learning**
 - Leverages forwarding strategy to reactively build forwarding state (directions where authentic data can be found)
- **NDN Over WiFi Direct**
 - Overlay management and *secured name* prefix exchange

- **ndn-autoconfig**
 - Constructs/maintains overlay tunnels to closest NDN hub
- **NDN-FCH**
 - Constructs/maintains overlay tunnels to closest NDN hub
- **NDN Neighbor Discovery**
 - Constructs/maintains overlay tunnels to neighbors

Virtual physical links, not a complete NDN connectivity solution
ndn-autoconfig

Synopsis

```bash
ndn-autoconfig [-h] [-V] [-c file] [-d]
```

Description

Client tool to run NDN hub discovery procedure.

Options

```bash
-d OR --daemon
```

Run ndn-autoconfig in daemon mode. In this mode, the auto-discovery procedure is re-run hourly or when a network change event is detected.

NOTE: if connection to NFD fails, the daemon will be terminated.

```bash
-c FILE OR --config=FILE
```

Use the specified configuration file. If `enabled = true` is not specified in the configuration file, no actions will be performed.

Showed our own lack of understanding on what kind of config NDN needs
Plugging NDN Entities into NDN Networks

• NDN’s network model requires one named entity to establish trust relations with others
 • Name
 • carrying application semantics
 • Certificate
 • enabling one to produce authenticatable data and verify received data
 • Trust anchor
 • establishing the trust relations of entities under a namespace
 • Trust policies
 • limiting the power of signing key to data with specific names
Configuring a Trust Anchor and Trust Policies

• Deployment/application parameters
 • Trust schema defining data/key name relations
 • Which key can sign what data / privilege separation

• Determine the local trust zone (and its scope)
 • Trusted microcosm “boss” (of the local trust zone)

• After trust anchor and trust policies bootstrapping
 • App can receive and authenticate data from trust zone entities
Configuring a Name and Certificate

• Application semantics
 • Depends on specific app what name is and how it is structured

• Assigned or selected
 • Depends on out-of-band (outside bootstrapping) knowledge of what it is
 • By admin, app owner, app developer, etc.

• Certificate issued based on proof-of-control over the namespace within a “trust zone”
 • ”Security challenges”, physical challenges (for proximity proof), or predefined knowledge (codes)

• After trust anchor and trust policies bootstrapping
 • App can publish authenticatable data for other trust zone entities
An Example of NDN Entities

- **App-defined**
 - `/ndnfit` self-signed certificate
 - `/ndnfit/KEY`
 - Signature
 - Trust Anchor
 - `/ndnfit/bob/KEY`
 - Signature
 - Anchor Cert

- **Local Trust Anchor**
 - Alice’s certificate
 - `/ndnfit/alice/KEY`
 - Signature
 - Anchor Cert

- **Analyzer App**
 - Digital Keys
 - Trust Policies
 - Anchor Cert

- **Sensor App**
 - Digital Keys
 - Trust Policies
 - Anchor Cert

Self selected (first come first serve basis), app approved
Terminology for the Rest of Tutorial

- Any NDN entity can become a (local) trust anchor T
- All NDN entities under the same trust anchor make a Trust Zone
- Owner of the trust anchor T is the Controller of this trust zone

Can be self-signed (may require different logic for name selection)
Definition of NDN Configurations

- Plugging/Configuring a new entity E_{new} is
 - Configuring E_{new} into a trust zone
 - E_{new} must have a name, obtained on its own, or otherwise assigned by the Trust Zone Controller
 - E_{new} must have its trust anchor, certificate and trust policies installed
Logical steps of security bootstrapping: Step 1

• Mutual authentication between Trust Zone Controller and E_{new}
 • Trust Zone Controller authenticates E_{new} to confirm its trustworthiness
 • E_{new} authenticates Trust Zone Controller to be its authority
 • In order to accept the Trust Zone Controller’s self-signed certificate as trust anchor
Steps 2: Obtain Trust Anchor and Policies

- After mutual authentication, E_{new} can obtain trust anchor.
- Trust anchor establishes the trust relation between E_{new} and Trust Zone Controller.
Step 3: Obtain/Update Trust Policies

- E_{new} fetches trust policies that Trust Zone Controller has defined for it
- Trust Zone Controller may change trust policies from time to time
- E_{new} can fetch new trust policies securely in the same way as fetching other named data
Step 4: Obtain Certificate

- E_{new} obtains certificate issued by Trust Zone Controller
 - E_{new} validating certificate issued by Trust Zone Controller

Ready to Publish Data
Bootstrapping Mechanics

• Use-case specific mutual authentication process
• Manual or protocol-specific trust anchor and policies (schema) installation
• Manual or protocol-specific obtaining a certificate
 • Manual
 • NDN-CERT
Trust Zone Controller Returning Identity Bundle

- Trust Zone Controller can bundle \(<\text{trust anchor, certificate, trust policies}>\) in one data object as the reply to the configuration request
- Chatroom app installs the components inside bundle

more in the next part of tutorial
Exploring Problem Space in Security Bootstrapping

• How to accomplish mutual authentication
 • Solutions depend on use case scenarios

• Generalized used case scenarios

 • **Bootstrapping** E_{new} in secured local environment
 • Physically secured environment:
 • No third party can communicate with either Trust Zone Controller and E_{new}
 • mutual authentication: the only party that can communicate with E_{new} is the controller, and vise versa

• Bootstrapping E_{new} in unsecured local environment

• Bootstrapping remote E_{new}
Moving on to part 2 of the tutorial Creating and Using Trust Schemas in 1st Use Case