Multi-Worker NFD: an NFD-compatible High Speed NDN Forwarder

Sung Hyuk Byun, Jongseok Lee, Dong Myung Sul and Namseok Ko
ETRI, Korea
Motivation

- NDN Forwarding Daemon (NFD)
 - is a default NDN forwarder
 - is designed for modularity and feature extensibility
 - but has low forwarding performance

- Main bottleneck of NFD performance
 - Single-Thread Forwarding Architecture
Multi-Worker NFD (MW-NFD)

- Design Goals
 - High-speed NDN Forwarding
 - Full compatibility with NFD and existing NDN applications
 - Keep NFD’s Forwarding Plane Architecture for easy porting of any new NFD features

- Design Principles
 - Support multiple forwarding threads running on different cores
 - Keep NFD’s forwarding plane in forwarding threads
 - Support all the management features of NFD with same API

- Based on NFD v0.7.0
MW-NFD Architecture

Management

RIB Manager

forwarding worker #1
Strategy, NDNLP, PIT, CS, FIB, Tx

forwarding worker #2
Strategy, NDNLP, PIT, CS, FIB, Tx

forwarding worker #k
Strategy, NDNLP, PIT, CS, FIB, Tx

Local App. #1

Local App. #m

Port 0
Rx & Dist.

Port 1
Rx & Dist.

Message Queue

Face
Input Threads

- Allocate **one input thread to each input port**
- Receive packets from faces associated to the port
 - register **associated faces to the thread's io_service**
- Packet parsing and distribution to workers based on
 - Interest *
 - hash of name prefix of pre-configured length (default = 2)
 - Data/Nack without PIT token *
 - same to Interest
 - Data/Nack with PIT token *
 - worker-id of matching Interest encoded in PIT token
 - First fragment Interest/Data/Nack
 - same to Interest/Data/Nack
 - store selected worker-id with its fragment_index
 - Subsequent fragments :
 - stored worker-id for its fragment_index

(*) : adopted from NDN-DPDK
Management Thread

- Launches input and forwarding worker threads on configured cpu cores
- Receives and distributes packets from local application faces and internal face
- **Processing all management commands** (nfdc commands) by interacting with input and worker threads
 - under development
Forwarding Demo Configuration

- NDN Pktgen: based on DPDK pktgen 19.12
- FIB: 10K (avg prefix length = 4.26)
- Interest Stream: 10M with unique names (adding 2~4 words to FIB entries)
- Platform
 - MW-NFD: Xeon Gold 6242 (2.8GHz, 16 cores) with two 10GE ports NIC
Forwarding Throughput

- Interest + Data Forwarding Throughput
- 16.4 Gbps (for 10 workers, 8192 B Data)
- MW-NFD can yield about 13 times of NFD throughput
Future Work

- Develop management features fully compatible with NFD
 - nfdc command processing
- **Compatibility tests** with existing NDN applications
- Enhancing some forwarding logic implementations
 - Packet receiving in input threads
 - some NFD forwarding logics (CS lookup/insert, etc)
- **Source release after compatibility testing**