
NDNizing Existing Applications: Research Issues and
Experiences

Teng Liang
The University of Arizona
philoliang@cs.arizona.edu

Ju Pan
The University of Arizona

pjokk722@email.arizona.edu

Beichuan Zhang
The University of Arizona
bzhang@cs.arizona.edu

ABSTRACT
A major challenge to potential ICN/NDN deployment is the re-
quirement of application support, namely, applications need to
be rewritten or modified in order to run on NDN networks and
receive the full benefits. Using a proxy to translate between an
application-level protocol and NDN offers a viable solution that
balances between development cost and architectural benefits. In
this paper, we study on the questions of how to facilitate and incen-
tivize the development and deployment of such protocol translation
proxies. We propose to enable existing applications to communicate
“off the grid”, i.e., using only local network connectivity without
the global Internet, by translating between conventional client-
server protocols and NDN. This provides deployment incentives
by enabling a useful feature with no or minimal changes to exist-
ing applications. By giving the experience of a few protocols, we
hope to abstract out some common design patterns that can be
reused in developing other application-level proxies. This paper re-
ports our work on IMAP/NDN translation for local email access and
XMPP/NDN translation for local group chat. Based on this work, we
identify and discuss a number of common design issues including
application-level framing, namespace design, application protocol
semantics, multiparty synchronization, security and privacy, and
real-world deployment challenges.

CCS CONCEPTS
•Networks→Network architectures;Application layer pro-
tocols;

KEYWORDS
ICN; NDN; Proxy; Off the grid; Application Translation; ICN De-
ployment

ACM Reference Format:
Teng Liang, Ju Pan, and Beichuan Zhang. 2018. NDNizing Existing Ap-
plications: Research Issues and Experiences. In 5th ACM Conference on
Information-Centric Networking (ICN ’18), September 21–23, 2018, Boston,
MA, USA. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/
3267955.3267969

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICN ’18, September 21–23, 2018, Boston, MA, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5959-7/18/09. . . $15.00
https://doi.org/10.1145/3267955.3267969

1 INTRODUCTION
The core innovation in Information Centric Networking (ICN),
including Named Data Networking (NDN) [35]1, is the use of
application-level names as the identifier for network packets. This
allows the network to identify data independent of a particular
connection, and to retrieve desired data from anywhere instead
of a single given host. While this design decision underpins the
architectural benefits of NDN, it also comes with some challenges.
The one challenge that stands out as a major roadblock to NDN
deployment is the need of application support. In order to run on
NDN networks and get the full benefits of the architecture, appli-
cations need to inform the network about the names of the data
they are requesting or providing. Since existing applications are not
designed to use this paradigm, they cannot run on NDN networks.

To the best of our knowledge, there are three approaches to solve
this problem: (1) develop native NDN applications from scratch,
which will enjoy the full benefits of NDN but incur the most devel-
opment cost; (2) run a proxy that translates between TCP/UDP/IP
and NDN, enabling existing applications to run on NDN networks
without any change, but receive only limited benefits from NDN;
and (3) run an application-level proxy that translates between the
application’s native application-level protocol and NDN, which
incurs less development cost than the first approach and receives
more benefits than the second approach.

Our research studies the third path. By investigating the ap-
proach of application-level protocol translation, we notice two
major research questions. The first question is that, given there are
so many application-level protocols, how do we minimize the effort
of developing each translation proxy? Our hypothesis is that there
are many issues, such as namespace design, name discovery, and
security, common to most or all applications. If the solutions can
be abstracted into a few key design principles or design patterns,
we can significantly reduce the effort needed for developing each
translation proxy.

The second research question we consider is how to create incen-
tives for developers to upgrade their applications, even before any
NDN deployment occurs in the network. To jumpstart upgraded
application deployment, we need to find use cases where updated
applications will enjoy significant benefits even before any existing
network element has been upgraded.

In this paper, we propose to use the capability of “off-the-grid”
communication to incentivize initial upgraded application deploy-
ment and hope to come up with a number of reusable design pat-
terns to aid the development of application-level translation. To-
day’s applications predominantly rely on cloud servers and the
Internet connectivity to reach those servers. However, there are
1The work presented in this paper is done under NDN, but many discussions apply to
other ICN designs as well.

https://doi.org/10.1145/3267955.3267969
https://doi.org/10.1145/3267955.3267969
https://doi.org/10.1145/3267955.3267969


ICN ’18, September 21–23, 2018, Boston, MA, USA T. Liang et al.

scenarios where global Internet connectivity is poor or even not
available, but local network connectivity is adequate - for example,
after a natural disaster or onboard an airplane. In these scenarios,
most existing applications will stop working, but an NDN appli-
cation would be able to work to the fullest extent allowed by the
network connectivity, discovering and retrieving data between
two locally connected devices without going through the cloud.
Translating existing application-level protocol and NDN through
transparent proxies will allow existing applications to communi-
cate seamlessly off the grid. This will not require any change to
the application, nor any change to the network. Therefore it is a
reasonable starting point for deploying NDN at applications and
end hosts.

As a concrete basis for our work, we design IMAP/NDN transla-
tion for local email retrieval between two end devices, andXMPP/NDN
translation for local group chat. Through these efforts, we identify
key common design issues, including application-level framing,
namespace design, application logic translation, security, privacy,
and real-world deployment challenges. For each issue, we outline
our design for the specific protocol, and discuss the rationale behind
our design choices, and draw generalizable conclusions. Though we
do not have complete solutions for all the issues yet, we hope the
discussion will shed light on how to develop application-level trans-
lation in general, and lead to common design patterns that can be
reused in translating other application protocols. Even for applica-
tions that use proprietary protocols, this general understanding and
design patterns will still help developers convert such applications.

The rest of the paper is organized as follows. Section 2 further
elaborates the rationale behind this work. Section 3 gives a sys-
tem overview for application-level translation, and Sections 4, 5
and 6 provide more details and discussions on various design issues.
Section 7 introduces the evaluation details, Section 8 is the related
work, and Section 9 concludes the paper.

2 DESIGN RATIONALE
NDN was proposed as a future Internet architecture, in the sense
that it is a fundamental change to the basic network service seman-
tics, and it impacts almost all aspects of network systems. Research
so far has been mostly focused on why this fundamental change
is desirable, and how to do it efficiently. Past research has demon-
strated and quantified many benefits enabled by the new architec-
ture, which includes in-network caching, native anycast and multi-
cast, resilient and efficient data retrieval [32], DDoS resistance [11],
schematized trust [33], and data-centric security [37]. There are
also many advances in performance optimization of various NDN
mechanisms, such as fast and scalable name lookups [26], efficient
caching policies [38], secure and scalable routing protocols [14], and
so on. With a simulator ndnSIM [1], a software prototype NFD [27],
and various libraries [28], NDN has been studied in many different
network environments like Internet of Things [22], vehicular net-
works [12], building management and automation [23], in addition
to the traditional Internet.

With all this progress, it is time to think about NDN’s deploy-
ment: its potential paths, roadblocks, and possible solutions. This
is not saying that NDN is mature and ready for large-scale deploy-
ment now, but rather, it is a start of research on deployment-related

issues, which are as important to NDN’s future as the aforemen-
tioned performance-related issues. In the short term, this research
will help increase NDN experiments and trials in the real world
to advance NDN research; in the long run, it will prepare us for
the actual deployment, or at least deeper understanding of what it
takes to make NDN a reality.

2.1 Challenges in Deployment
Full deployment of NDN requires upgrading the network and the
applications. The need for network support is clear: at the mini-
mum, network devices need to change from address-based packet
processing to name-based packet processing; on top of that, they
may incorporate storage for caching, different forwarding strategies
for different contents or network environments, and some security
measures. The core research question is how to make these changes
incrementally. More specifically, how to make NDN devices co-exist
with IP devices in the same network without interfering with each
other in packet forwarding, how to ensure there are benefits for the
first mover or initial deployment, and how to ensure incremental
deployment will lead to increasing benefits. These are typical issues
in deploying new network protocols and there is already work in
this area for ICN/NDN. For example, Cisco’s hICN [20] encodes
names as IPv6 addresses to allow hICN packets to be processed
by both upgraded and legacy routers, and the benefit of initial
deployment is improved performance for content dissemination
and streaming. For another example, Zhang et. al. [31] proposed a
dual-stack scheme for NDN switches and IP switches to co-exist in
local area networks, improving path diversity and redundancy.

The need to incentivize application support, however, has not
been elaborated to the best of our knowledge. The core innovation
of NDN is to use application-level names to name network packets.
This allows the network to identify data independent of any address,
port number, or connection. Thus the network can retrieve desired
data from anywhere via any path, which is the foundation for all
the benefits of the NDN architecture. However, sharing the same
namespace between application and network also means that the
interface between application and network has to change. Existing
APIs such as the socket API only allow communication via addresses
and port numbers, not via application-level names. This suggests
existing applications have to be upgraded in order to run on NDN
networks and to acquire full benefits.

Requiring support from both networks and applications is the
direct result of NDN’s change to the basic network service seman-
tics: from “delivering packets to a destination” to “retrieving data of
given names.” It makes NDN deployment rather different from most
network protocol deployment we have seen. The closest one is per-
haps IPv6, which requires upgrading both network devices as well
as applications to use 128-bit addresses. However, the application
changes required by IPv6 are well-defined and relatively straightfor-
ward compared with the changes required by NDN. To upgrade an
application for NDN, developers have to consider numerous issues
such as namespace design, name discovery, data-centric security,
and many others. Because the semantics of name-based API and
address-based API are remarkably different, applications need more
fundamental changes in order to use name-based API. It is the first
time that in-depth application changes are needed in deploying



NDNizing Existing Applications: Research Issues and Experiences ICN ’18, September 21–23, 2018, Boston, MA, USA

a network architecture. This is the research problem that we will
focus on in the rest of this paper.

2.2 Application Support of NDN
There are three approaches to solve the application support prob-
lem. They differ in the tradeoff between development cost and
architectural benefits.

The most straightforward and complete solution to the appli-
cation support problem is to rewrite an application from scratch.
Developers would give up the traditional thinking of which server
addresses are available, which server address to use, how to de-
tect and recover from an unresponsive server address, etc. They
would need to rethink the design and implementation from the
data-centric point of view, e.g, how to frame the data, name the
data, discover names, secure the data, and so on. NDN researchers
have done lots of work developing native NDN applications, from
simple network diagnosis tools [15], to file sharing [2] and video
conferencing [13], to the Internet of Things [13] and augmented
reality [3] applications. The advantage of this approach is the full
support of NDN and full benefits from the architecture. We believe
this will be the solution in the long run, especially when there is
already significant deployment of NDN in the network. In the near
term, however, the downside of this approach is a large amount of
work required to develop such applications. Especially in large-scale
complex software, most part of the software is non-network-related,
such as user interface and internal data processing logic. Without
the high-quality implementation of these parts, users might have
no mind to use the application; but rewriting and maintaining these
parts will take up most development efforts without significant
benefits from using NDN.

Another approach is to run a proxy that translates between
TCP/UDP/IP and NDN, such that existing applications can run
over NDN networks without any change. A number of such proxy
designswere presented in [17, 21, 25].While this approach offers the
best backward compatibility in that no application change is needed
at all, the translation has to sacrifice some of the architectural
features. For example, to translate a TCP packet into an NDN packet,
the proxy needs to come up with a name for the resulting NDN
packet. Based on information from TCP/IP headers, the proxy can
make up a name uniquely identifying the packet, but the name will
be associated to the specific TCP connection. This provides benefits
such as caching within the same TCP connection (e.g., efficient
retransmission of lost packets), but cannot support caching across
different TCP connections (e.g., multicast to different consumers).
Furthermore, security policies and trust models have to be defined
based on addresses and port numbers, not application-level data
names.

The third approach, a midpoint between the first two, translat-
ing between application-level protocols and NDN. For example,
translation between HTTP and NDN can enable all HTTP-based
applications to run on NDN without changes. The translation does
not change existing applications’ implementation, and incurs much
less development cost than rewriting the application. The trans-
lation will also leverage the information in the application-level
protocol header to generate meaningful data names across differ-
ent network connections, which allows this approach to receive

much more architectural benefits than running a translating proxy.
Therefore, in the early stage of NDN deployment, we think this
approach makes the best cost-benefit tradeoff.

Looking further into this approach, we notice two major re-
search questions. The first question is that, given there are various
application-level protocols, how do we minimize the effort of de-
veloping each translation proxy? Our hypothesis is that there are
many issues, such as namespace design, name discovery, and se-
curity, that are common to most or all applications. Thus, after
examining a few protocols, we might be able to summarize some
design principles or design patterns, which will significantly reduce
the effort needed for developing each translation proxy. For this
purpose, we have chosen IMAP/NDN translation for local email
access and XMPP/NDN translation for local group chat. The reason
for choosing these two protocols is they are both public standard,
have mature open-source implementations, and support numerous
different applications. We use these protocols to demonstrate that,
if implemented properly, this level of translation can enable NDN
benefits the existing applications with only trivial configuration
changes.

The second research question is that even if it is feasible andman-
ageable, what are the incentives for developers to upgrade their
applications for NDN before any NDN support being deployed
to the network? This is important to break the ‘chicken-and-egg’
problem of which one to deploy first, network or application? To
answer this question, we need to search for use scenarios in which
upgraded applications can enjoy certain benefits even without in-
frastructural support. If we can achieve this, it will be possible for
the deployment to start from the edge, i.e., the applications and end
hosts, and as the demand increases, it will drive the deployment
gradually to the network. The use scenario we identified is the
so-called “off-the-grid” communication, to be elaborated in the next
subsection.

2.3 Off-the-grid Communication
Most of today’s applications are built on top of TCP/IP’s point-to-
point communication, a good match with the client-server model
in which the server is responsible for providing most functionality,
including serving the data, securing the data, controlling access to
the data and so on. With the rising trend of cloud computing, most
of today’s applications have become dependent on cloud servers,
hence the Internet connectivity to reach those servers. Without
such Internet connectivity, applications simply do not work.

In real life, however, there is a number of scenarios where the
Internet connectivity is inadequate, limited, or not even available,
but local connectivity exists and allows device-to-device commu-
nication without going through the Internet. For example, after a
disaster crippling the communication infrastructure, or when the
user is onboard a cruise ship or an airplane, there is no Internet
connectivity available, but it is trivial to turn a laptop or smart-
phone into aWiFi access point and have other devices communicate
through this local WiFi network. Such local connectivity permits
a single user to share emails, notes, and pictures between his/her
phone and laptop, or a group of users to have a group chat. But
existing applications cannot take advantage of the local connec-
tivity since it does not allow them to connect to the cloud server



ICN ’18, September 21–23, 2018, Boston, MA, USA T. Liang et al.

which is essential to most of the modern applications. An example
of limited Internet connectivity is when a user tethers a laptop to
a smartphone to gain Internet access through the phone’s LTE, in
which case the user may want to minimize the traffic going through
LTE, e.g., downloading emails only once but storing them at both
the phone and the laptop. The existing apps download the same
emails twice, one copy for the phone and the other copy for the
laptop.

server 

TCP/IP 

TCP/IP 
NDN 

Figure 1: Off-the-grid Communication in NDN

It is clear that the traditional point-to-point client-server model
does not meet the demands of increasing user mobility and local
connectivity (e.g., WiFi, Bluetooth, Zigbee). No doubt that TCP/IP
applications can be modified to use local connectivity. For instance,
Apple’s Airdrop can share files between Apple devices using Blue-
tooth. The amount of work needed to make such a change, however,
is not trivial since a number of issues need to be resolved. Basically,
in order to work in an unknown local network, an application needs
to be able to (1) discover available data sources or services that it
is interested in, (2) exchange data with potentially multiple data
sources and sinks, and (3) ensure data integrity, security, privacy
and access control without the cloud server. These issues pose sig-
nificant challenges to application developers to devise solutions
from scratch and contribute to the fact that majority of today’s
applications do not work with local connectivity only.

Named Data Networking (NDN) is a natural fit for off-the-grid
communication (Figure 1). It allows applications to retrieve data
from anywhere without having to specify a server address or host-
name. Using application names in network packets, NDN facilitates
service discovery, in-network caching, multicast, data integrity, and
security. If every application was built on top of NDN, it would
not care whether there is an Internet connectivity; it would simply
work to the fullest extent allowed by the available connectivity.
For example, on an airplane, a laptop would not be able to retrieve
emails from the server but would have no problem retrieving emails
from the user’s phone. Therefore NDN presents the architectural ad-
vantage in supporting off-the-grid communication, and that is what
we chose to enable by conducting application-level translations.

3 SYSTEM OVERVIEW
This work focuses on two use scenarios. The first scenario is to
share emails using only the local network connectivity between
two devices, e.g., a smartphone and a laptop, owned by the same
user. For example, users may download emails through the Internet
to the phone’s local storage before boarding. During the flight, they
want to work on these emails on the laptop, and the emails can
only be fetched from the phone. Another example is that when the
laptop is tethered to the phone for Internet access, the user wants

to download emails to both devices but only costs one share of LTE
data usage. In the second use scenario, multiple users are connected
locally but not to the Internet, and they want to be able to chat
through XMPP. In both scenarios, we assume the end devices are
the only places that have deployed NDN.

As Figure 2 shows, all the functionality is achieved by running
an NDN Proxy on each end device. Applications only need to be
configured to connect to the local Proxy instead of a remote server,
i.e., the IMAP server or the XMPP server. While the main job of
the Proxy is to translate between application protocols, IMAP and
XMPP in our scenarios, and NDN, it also needs to support commu-
nication to the cloud server when the Internet is accessible. The
major components in NDN proxy include:

NDN Proxy 
 

IP Application Handler 

NDN 
Module 

Network Selector 

IP Application 

NDN Sync 

NDN Data 
Storage 

Security Manager 

Application Adapter 

Data 
Translator 

TCP/IP 
Module 

Consumer/Producer 

Figure 2: The NDN Proxy Architecture

• IP Application Handler: this module is responsible for
communicating with the application through the application
protocol.
• Network Selector: this module decides whether to use
TCP/IP to reach cloud server or use NDN over the local
network. The default setting is to access cloud server first,
and if not reachable, turn to NDN over the local network.
This behavior can be configured independently.
• TCP/IP Module: this module is responsible for the TCP/IP
side of communication, i.e., accessing the cloud server, for
backward compatibility purpose.
• NDN Module: this module provides core functionalities of
protocol translation.

Within the NDN module, the proxy needs to translate appli-
cation contents from/to NDN data packets (Data Translator) and
store them in (Data Storage) for later sharing. This step requires
application-layer framing of the data and the proper namespace
design. The Application Adapter translates application requests to
NDN Interest and translates NDN Data to application responses.
The actual NDN traffic is done either through direct Interest-Data
exchange (the Consumer/Producer module), or over the NDN Sync
module, depending on the pattern and semantics of the communi-
cation. Finally, the Security Manager handles security, trust, and
privacy issues.

4 DATA TRANSLATION
Before any network communication, we need to define what builds
a Data packet and the name of each Data packet.



NDNizing Existing Applications: Research Issues and Experiences ICN ’18, September 21–23, 2018, Boston, MA, USA

4.1 Application Layer Framing
Proposed by Clark et. al. in 1990 [5], Application Layer Framing
(ALF) is a design principle that says applications should break the
data into Application Data Units (ADUs), and the network should
treat ADU as the unit of manipulation. With ALF, packet process-
ing through the entire system is more efficient because packet
repackaging at different layers is eliminated. However, since TCP
doesn’t preserve ADU boundaries, existing applications usually do
not implement the ALF principle.

In NDN, each Data packet has its unique name and a signature
that binds the name, the payload, and the signing key. This structure
is more rigid and suitable for ALF. The reasons are: first, since the
name is the application-level name, it is necessary to have the
payload also to be a unit semantically meaningful at the application
layer, an ADU. Second, since composing a packet involves signing
overhead, it would be better to prepare a packet only once and
reuse it as much as possible. Third, reusing ADUs avoids signing
the same data multiple times, and increases the chance of the cache
hit.

Without the implementation of ALF, in order to retrieve data, ex-
isting client-server based applications allow clients to send requests
to a server, and the server will push all requested data back. To
translate this procedure into NDN, whether or not to apply ALF in
NDN results in different translation designs. We give two concrete
examples to translate IMAP request-response for data retrieval:
• Without applying ALF in NDN: as shown in Figure 3,
without applying ALF, the NDN proxy can encapsulate any
application request in an NDN Interest packet and any appli-
cation reply in one or more NDN Data packet(s). This makes
protocol translation trivial to achieve, but it incurs more
overhead due to the process of signing packets on the fly,
few cache hits, and one more round trip time if the response
is divided into more than one Data packet.
• With applying ALF in NDN: as shown in Figure 4, this
design reorganizes application data into ADUs and reuses
them to satisfy Interests. Compared to the first design, this
design makes NDN proxy more efficient, because ADUs can
be generated as NDN Data packets in advance. Moreover,
well-organized ADU is the foundation of running NDN Sync
(Section 5.1). One downside of this design is that data fetch-
ing becomes less flexible, as one ADUmay contain additional
information than an application asks for. In addition, it re-
quires an NDN proxy to understand application semantics to
accomplish data retrieval translation. Overall we think ALF
is a great fit for NDN, especially in the off-the-grid scenarios
where no centralized server is available.

4.2 Defining Application Data Units (ADUs)
The main design issue in adopting the ALF principle is to define
ADUs. Here we use IMAP/NDN translation to illustrate that the
ADU formation (Figure 5) should consider application semantics,
data producers and data granularity.

First of all, NDN ADUs should be semantically meaningful ap-
plication data blocks. For example, the left part of Figure 5 shows
the basic IMAP data structure, which is the fundamental of form-
ing various ADUs and naming them. However, the problem still

Email Client Email Client 

IMAP command 

Interest 

Data 

IMAP response 

Encapsulate IMAP command 
to an NDN Interest packet 

Send Interests, if more than 
one Data packet is generated 

1. Process IMAP command 
2. Encapsulate IMAP response        
    to NDN Data packet(s) 

Interests 

Data 

Decapsulate NDN Data 
packets to IMAP response 

mailSync  
(NDN proxy) 

mailSync  
(NDN proxy) 

Figure 3: To encapsulate/decapsulate IMAP to/from NDN
without defining Application Data Units (ADU)

Email Client 
mailSync  

(NDN proxy) Email Client 

IMAP command 

Interest(s) for ADU  

Data 

IMAP response 

Translate IMAP command to 
NDN Interest(s) 

Query storage for 
ADU (NDN Data)  

Translate NDN Data packet(s) 
to IMAP response 

mailSync  
(NDN proxy) 

Figure 4: To translate IMAP to/from NDN with defining Ap-
plication Data Units (ADU)

exists within this structure: it does not differentiate information
created by different producers, because email clients always fetch
emails from one centralized server. For example, the attributes of an
email message containing information specific to a mailbox, such
as whether messages have been read, which for the same email
can be different on different devices. The attributes also contain
information related to the email message itself, such as message
size and body structure. The former information should be created
and signed by a mailbox, and the latter one should be created and
signed by the composer of the email. Mixing them in the same
ADU would make security and trust decisions extremely difficult in
NDN. Therefore we split IMAPmessage attributes into two different
ADUs, status and metadata, which correspond to the two kinds of
attribute information mentioned at the beginning of the paragraph.



ICN ’18, September 21–23, 2018, Boston, MA, USA T. Liang et al.

Signed by mailbox 

Signed by email composer 

Email Data Structure in IMAP: 
|----user 
|      |----mailbox 
|             |----message 
|                  |----attributes 
|                  |----text 
|                        |----header 
|                        |----body  
 

status 
(attributes related to mailbox) 

metadata 
(attributes related to email message) 

Figure 5: Basic Email data structure in IMAP and the two
different data producers of message attributes

The third factor to consider is the data granularity. An ADU should
be large enough to make the overhead of the packet header and
signing operation reasonable, and small enough to reduce the un-
necessary information when it’s reused to answer future Interests.
Take Figure 6 as an example, making every individual attribute of
an IMAP message an ADU would be too fine-grained, incurring the
significant overhead of packet header and signing operation. Put
all these together, Figure 7 shows how we define NDN ADUs for
IMAP data.

UID 

Sequence 
Number 

Flags 

Internal 
Date 

status 

metadata 

Size 

Envelope 
Structure 

Body 
Structure 

Larger granularity  Smaller granularity  

Email Data Structure in IMAP: 
|----user 
|      |----mailbox 
|             |----message 
|                  |----attributes 
|                  |----text 
|                        |----header 
|                        |----body  
 

Figure 6: Defining each individual attribute as an ADU in-
curs significant overhead

4.3 Namespace Design
Once ADUs are defined, the following critical issue is how to name
the data. Namespace design is a complex issue: the same set of data
can be organized and named in different ways depending on how
applications are designed to access the data.

In IMAP/NDN and XMPP/NDN translations, they adopt different
data access logics to determine their namespace designs. Figure 7
shows the namespace design for IMAP/NDN translation. In this
translation, we follow IMAP’s client-server data access logic, be-
cause the logic that clients retrieving emails from one server is
suitable in our scenario where one device retrieve emails only from
the other one. XMPP has more complicated data access logics, such

/mailSync 

<user> 

<mailbox-name> 

Application prefix 

<version> 

<message-
UID> 

/status /metadata /body 

<#seq> <version> 

Application  
Data Unit /snapshot 

<version> 

/manifest 

Email Data Structure in IMAP: 
|----user 
|      |----mailbox 
|             |----message 
|                  |----attributes 
|                  |----text 
|                        |----header 
|                        |----body  
 

<#seq> 

Figure 7: Redefining data structure in IMAP to NDN Appli-
cation Data Units (ADUs)

as publish-subscribe pattern and multiparty communication. In
XMPP/NDN translation, we utilize NDN Sync (Section 5.1) as a ba-
sic mechanism to achieve these data access logics, and accordingly
design NDN-XMPP namespace in Figure 9.

Based onXMPP/NDN translation, we abstract one naming schema
for Data, and another naming schema for signed Interests, which
are often used as commands or negotiation requests (Figure 8). For
data names, the first part - application prefix - is to distinguish data
for different applications, and it should be routable in an NDN local
network. The second part is the data collection prefix, which reflects
how applications organize and access various datasets. For instance,
in XMPP/NDN namespace design (Figure 9), we have three such
data collection prefixes corresponding to three major application
datasets, i.e., the dataset about users, the dataset about one-to-one
chats, and the dataset about multi-user chats. Data collection pre-
fixes provide well-structured units for applications to choose to
synchronize by applying NDN Sync. The third part of the data name
is the producer name, which indicates who generates the data. It is
necessary when the data collection is contributed by more than one
producer. Having this information in the name helps consumers
apply security mechanisms or trust schema (Section 6). The last part
of the name is Application Data Unit name, which is determined
by the specific ADUs. Within this high-level naming schema, the
actual name components need to include details such as version
number, segment number etc.

While the above schema works well for static data in IMAP and
XMPP, sometimes there’s ‘dynamic’ data, which is produced by
running a command or in response to a negotiation request. For ex-
ample, an XMPP user sends a friend request to another user. Trans-
lating such process to NDN, a user sends a signed Interest to another
user with the Request part of the name being the XMPP friend re-
quest verb (Figure 8). We use this naming schema to support this
type of interaction as opposed to data retrieval or synchronization.

4.4 Data Translation Procedure
After defining ADUs and namespace, we are now able to translate
application data into NDN packets, so they can be consumed in
an NDN network. While the non-modified applications still send
and receive IP packets using existing application protocols, these



NDNizing Existing Applications: Research Issues and Experiences ICN ’18, September 21–23, 2018, Boston, MA, USA

1. Data Collection:  /<Application Prefix>/<Data Collection Prefix>/<Producer Name>/<ADU Name>/ 
 
2. Signed Interest:  /<Application Prefix>/<User Name>/<Request>/<timestamp> 

Figure 8: Two Generalized Naming Schemas

/ndn-xmpp 

<one-to-one-channel> 

<user> 

message presence 

<#seq> 

E/D-Key 

<#seq> <#seq> 

One-to-One Chat Namespace 

<user> 

<roster> 

<version> 

<request> 

<timestamp> 

ID-CERT 

User Namespace 

Application prefix 

/MUC 

<room> 

message presence 

<#seq> <#seq> 

Multi-User Chat Namespace 

/manifest 

<user> 

Application Data Unit 

Data Collection Prefix 

Producer Name 

Signed Interest 

/manifest room-list 

<version> 

<user> 

<version> 

Figure 9: NDN-XMPP Namespace Design

packets are examined at application-level by the NDN Proxy and
converted to NDN packets if needed.

When the Internet is available and the client is communicat-
ing with the cloud server, the NDN Proxy will relay the traffic
to keep the communication going. At the same time, it examines
each packet’s application protocol header to determine whether
the payload constitutes any useful application data. If so, it will
construct corresponding NDN packets and save them into the NDN
storage. When the application communicates over local connectiv-
ity via NDN, the NDN Proxy will already have some Data packets
in storage that might be consumed to satisfy Interests. For example,
in the IMAP/NDN translation, when the phone downloads emails
from a server, the NDN proxy translates the downloaded emails
into NDN Data packets to satisfy Interests sent from the laptop;
in the XMPP/NDN translation, when a client sends a message to
chat room, the message is translated into an NDN Data packet, no
matter the Internet is available or not.

5 TRANSLATION OF COMMUNICATION
PROTOCOL

After translating application data into NDN packets, this section ex-
plains the related issues and solutions in translating communication
protocols.

5.1 NDN Communication Patterns
Before going into the details of protocol translation, we first intro-
duce the basic NDN communication patterns that the translations
utilize, Interest-Data Exchange and NDN Sync.

• Interest-Data Exchange:One-to-one Interest-Data exchange
is the fundamental communication pattern that the NDN
network layer follows. Therefore, an NDN application can
directly retrieve a Data packet by issuing an Interest to an

NDN networking, using the consumer/producer program-
ming model [18]. In addition, Interest-Data exchange builds
the foundation for NDN Sync.
• NDN Sync: NDN Sync provides the functionalities for NDN
applications to reliably synchronize data within the shared
namespace among multiple parties, serving as a transport
layer. Despite that NDN Sync involves complex mechanisms
built on top of Interest-Data exchange and has various de-
signs (Section 8), this work treats NDN Sync as a basic com-
munication pattern in NDN.

5.2 Translating Communication Patterns
Existing application protocols apply various application-level com-
munication patterns, fitting in either pull or push communication
model, such as request-response pattern and publish-subscribe pat-
tern. To translate these patterns into NDN, we use both Interest-
Data exchange and NDN Sync as basic building blocks.

Pull Model. : Request-response pattern is commonly used by
clients to send requests, which may include data retrieval request
and command request, such as fetching emails and inviting a friend.
To translate such communications, the general approach is to con-
vert client requests to Interests and the server replies with Data. As
explained in Section 4.1, the simplest way is to encapsulate each
request in one Interest and to encapsulate each reply in one Data.
But to translate data retrieval requests, this approach does not fully
utilize characteristics of NDN and often incurs significant over-
head. We focus more on achieving application objectives instead
of converting packets mechanically. Therefore, one data retrieval
request/reply may be translated to one or more Interest(s)/Data(s),
and vice versa, depending on the application’s specific features. In
addition, command requests can be converted to signed Interests,
and data retrieval requests can also be translated to NDN using
NDN Sync.



ICN ’18, September 21–23, 2018, Boston, MA, USA T. Liang et al.

In our local email sharing scenario, there are only two devices, a
smartphone, and a laptop. Thus it is straightforward for the Proxy
to directly send Interest to retrieve Data. When an IMAP command
specifies multiple messages to retrieve, it will trigger the Proxy
to send multiple Interests. If an email is large in size or contains
the attachment, it is also common to split the message into mul-
tiple Data packets and to send multiple Interests to retrieve them
all. Nevertheless, basic Interest-Data exchange is needed for the
‘dynamic’ content, such as inviting a friend.

Push Model. : Push communication model is also widely used,
for example, an XMPP client can push its presence information to all
subscribers, and an XMPP server can send messages to users in the
same chat room. To translate such communications, we utilize NDN
Sync as the basic mechanism. More specifically, multiple parties
agree to use the same data collection prefix and apply NDN Sync to it.
Within this synchronization namespace, each party generates data
under its own subnamespace (i.e., the producer name), and others
can receive the data with the help of NDN Sync. This procedure
translates the push based communication patterns to NDN.

In XMPP multi-user chat, the chat messages need to be shared
among multiple users. NDN Sync fits in such scenario translation,
because NDN Sync provides multi-party data synchronization. If
the participants were interested in the same dataset in its entirety,
NDN Sync would provide a great service abstraction to applications
and an efficient implementation to handle various issues in group
communication. We have found that using NDN Sync in XMPP
can considerably simplify the translation design. We suspect other
application protocol translation will also acquire similar benefits
using NDN Sync.

5.3 Name Construction and Discovery
If applications always retrieve contents from a fixed server, there
is not much data/service discovery needed because the server
name/address is already configured. However, if the architecture
allows contents to be retrieved from anywhere, name discovery
becomes a necessary step. For example, in the off-the-grid scenario,
a device needs to discover what contents are available, and from
which peer it can retrieve the content of interest in the local net-
work. We have found four mechanisms useful in our work.

Naming Convention. : One simple way is to define static and
public keywords, algorithms, and rules, so NDN proxy is able to
correctly and independently construct names, then to communicate
with other parties. For example, as shown in Figure 9, ndn-xmpp,
MUC, and manifest are static keywords. Putting them together
as /ndn-xmpp/MUC/manifest is the manifest collection prefix. For
the variable name component <one-to-one-channel>, two friends
can individually generate the value, applying the same algorithm
with their identifiers as input. Such a mechanism helps two XMPP
friends seamlessly switch between infrastructure mode and off-
the-grid mode without negotiating the <one-to-one-channel> name
component in advance when switching to the off-the-grid mode.

Prefix Match between Interest and Data. : This is a basic name
discovery mechanism and it forms the foundation for some other
mechanisms. NDN allows a Data to satisfy an Interest whereas the
Interest name is a prefix of the Data name. For example, a consumer

sends an Interest /A/B and receives a Data /A/B/1 back. The Data
might not be exactly what the consumer wanted, but the consumer
is able to use the Data information to form a longer Interest name
for a more accurate query in the future.

With proper settings, this mechanism can assist a consumer to
fetch the latest version of data without knowing the version number
in advance, assuming the producer is accessible. In the IMAP/NDN
translation, we use such a mechanism to fetch the latest version of a
mailbox’s snapshot, responding to the IMAP SELECT command [6],
which asks for a brief description about one mailbox, such as the
number of email messages. For example,

(1) To translate an IMAP SELECT command, the NDN proxy cre-
ates an Interest /mailSync/teng@gmail.com/inbox/snapshot,
and sets MustBeFresh flag in the Interest to be true, meaning
that an in-network cached Data can be matched only if it
has not passed its FreshnessPeriod flag.

(2) This Interest will reach the producer (i.e., the NDN proxy
on phone), and the producer will send the latest version Data
back, e.g., /mailSync/teng@gmail.com/inbox/snapshot/v2with
FreshnessPeriod setting to 0.

Manifest. : It is a content object or a small collection of content
objects that contains information about one namespace, such as
existing name prefixes or names. Once the Manifest is retrieved,
the application knows the more accurate name prefixes or names
and avoids running discovery on a broader namespace. Thus this
mechanism reduces the scope of name discovery to discovering
and retrieving the Manifest. The Manifest can also be extended
to contain more information to achieve synchronization control
(Section 5.4).

Take the XMPP multi-user chat namespace in Figure 9 as an
example:

(1) Alice creates a newmulti-user chat room named Arizona-Tea,
and puts the room name into the content of a Data packet,
which is named as /ndn-xmpp/MUC/manifest/Alice/room-
list/v1. Alice at the same time, runs NDN Sync on the mani-
fest collection prefix /ndn-xmpp/MUC/manifest.

(2) Bob who also synchronizes this manifest prefix will get the
newly created Data that contains the room’s name, then Bob
runs NDN Sync on /ndn-xmpp/MUC/Arizona-Tea to retrieve
messages in the room. Bob sends messages to the chat room
with name prefix /ndn-xmpp/MUC/Arizona-Tea/Bob.

NDN Sync. : NDN Sync synchronizes data with a namespace.
Therefore, it can be used to discover the latest version of a content
object, and to discover subnamespaces as well. We give another
two examples:

(1) Following the previous example, Alice then creates another
room named Pizza, and updates the room-list Data packet
with a new version number /ndn-xmpp/MUC/manifest/Alice/room-
list/v2. As Bob runsNDNSync on top of /ndn-xmpp/MUC/manifest,
he gets the latest version of Data that contains the latest room
list.

(2) Another user Carol who just joined the network, runs NDN
Sync on themanifest collection and serves her room-list Data
packet /ndn-xmpp/MUC/manifest/Carol/room-list/v8. Again,
Bob is able to discover Carol’s room-list Data and her user



NDNizing Existing Applications: Research Issues and Experiences ICN ’18, September 21–23, 2018, Boston, MA, USA

identifier. This property is useful in scenarios such as when
users want to discover people nearby.

5.4 Control and Management
Existing applications may have various control and management
mechanisms. To translate them into NDN, we need to find proper
mechanisms, extend existing mechanisms, or come up with new
mechanisms in NDN. One example is group membership man-
agement in XMPP multi-user chat. To translate it, we perform the
management with both the data synchronization eligibility and the
data confidentiality in NDN.

For example, in XMPP, a user is able to create a multi-chat user
room and explicitly specifies who is eligible and who is ineligible
to join. In NDN, since data can be cached anywhere, preventing
ineligible users from fetching data is a different case. Therefore,
data is encrypted and the decryption keys are distributed to eli-
gible users only, in this way, the access control is achieved. How-
ever, ensuring data confidentiality is not sufficient, because an
attacker can poison the synchronization dataset if not controlling
synchronization members. We prevent such attack by not synchro-
nizing data from ineligible users and distributing the security con-
figurations in the Manifest. More specifically, in NDN translation,
when a user creates a multi-chat room, it creates a multi-chat room
namespace and the metadata in the room manifest namespace ndn-
xmpp/MUC/<room>/manifest (Figure 8). The metadata contains the
whitelist for the eligible users and the blacklist for the ineligible
users. After retrieving the metadata, only the eligible users are per-
mitted to sync the multi-chat room namespace, meaning that they
will not synchronize with ineligible users during the NDN sync
protocols. This requires NDN Sync to provide such mechanism.

6 SECURITY ISSUES
Today’s Internet applications mostly adopt a session-based security
model: the client is preconfigured the hostname or IP address of the
server, and establishes a secure session to the server, encrypting
transmitted data via Secure Sockets Layer or Transport Layer Secu-
rity (SSL/TLS). In addition, the client verifies the server’s identity
by checking its certificate issued by a trusted Certificate Authority
(CA), and the server authenticates the client by verifying its user-
name and password. This approach, however, does not apply to
off-the-grid scenarios, because we can neither require a device to
know which other devices it will retrieve data from, or require it
to trust a secure session with any device that is willing to provide
data. Therefore, we should adopt NDN’s data-centric model to en-
sure data security and privacy in the application translation for the
off-the-grid scenarios.

6.1 Data-Centric Security
We first briefly introduce the data-centric security mechanisms
in NDN, including integrity, confidentiality, access control, trust
schema, and group membership management in NDN Sync.

Integrity. : In NDN, data-centric integrity is ensured by binding
signature to every NDN Data packet. Therefore, consumers are
able to verify Data packets independently regardless of where they
are retrieved. Note that Interests can also be signed and verified as
Signed Interests. The signature carries the name of the certificate

which can be used to verify the signature. Since certificate in NDN
is a Data packet signed by another certificate, verifiers can easily
fetch the chain of certificates from the network, by issuing the
Interests for the certificates.s In our work, we use RSA signing to
sign all Interest and Data packets with the NDN proxy’s private
key.

Confidentiality andAccess Control. : Data confidentiality is achieved
by encrypting the content part of Data packets. In addition, because
NDN Data packets can be cached anywhere, access control is also
achieved by encrypting Data packets and distributing the decryp-
tion key to legitimate consumers. For encrypted Data packet, the
current NDN packet format does not contain a field for the encryp-
tion key name. One approach is to include the decryption key name
as part of the Data name, such as Name-based Access Control [34].

In our work, we use a shared secret symmetric key for encryption
and decryption of bulk data and use public cryptography to share
the secret key among trusted peers. In IMAP/NDN translation, two
NDN proxy instances synchronize the secret key after they set up
trust. In XMPP/NDN translation, sharing the secret between two
users in one-to-one chat is similar to the process in IMAP/NDN
translation. The challenge is to synchronize the secret key among
a group in the multi-user chat.

Trust Schema. : An application defines the trust model to describe
trust relationships among different parties. In NDN, name-based
trust schema [33] reflects trust relationships to signing relationships
by specifying name relationships for a Data packet (including both
raw data and key) and the signing Key, therefore it achieves data-
centric trust management.

Group Membership Management in NDN Sync. : As mentioned
in Section 5.4, NDN Sync should provide group membership man-
agement, so that eligible members can avoid synchronizing data
with ineligible members. For example, in XMPP/NDN translation, a
multi-chat room, users on the whitelist only synchronize data with
others in the whitelist. If only blacklist is applied, eligible users will
not synchronize with users on the blacklist.

6.2 Trust Model and Configuration
In application translation, two types of configurations involved,
one is for backward compatibility, and the other one is for NDN
communication. Take local email sharing as an example, and as-
sume the user has a Gmail account for the ease of composition. First,
since the application on the laptop is configured to access Gmail
account via NDN Proxy (on localhost 127.0.0.1), it has to accept the
Proxy’s certificate as the Gmail server. Plus since the smartphone
is accessing Gmail server, it has to know the user’s username and
password. Both need one-time input from the user and are neces-
sary to be compatible with the existing system. Second, between
the smartphone and the laptop, NDN communication requires the
signature for every Interest/Data packet. We need to generate key
pairs for both NDN proxy instances on the smartphone and the
laptop and configure them to trust each other’s key.

In order to implement data-centric security in NDN, the first
thing is to define the application trust model, and then to generate
certificates accordingly.While previous research has covered how to
use public-key cryptography to achieve various security and privacy



ICN ’18, September 21–23, 2018, Boston, MA, USA T. Liang et al.

properties, the most prominent challenge in terms of deployment
in our work is how to configure and retrieve these keys/certificates
without putting burdens on the end user.

NDN Proxy 

Trust 

NDN Proxy 

Figure 10: Two parties trust each other

In the off-the-grid scenarios, we find two potential trust models
that can be applied in our work. Figure 10 shows the basic trust
model that two parties trust each other. Because this model has
no dependency on a third party, it is simple to achieve. The only
requirement is that users have to manually set up the trust relation-
ship because the two parties share no trust anchor. For example, in
the local email sharing scenario, the NDN proxy instances on both
laptop and phone trust each other’s certificate with user’s agree-
ment; in XMPP/NDN translation, when a user wants to chat with
another user in the off-the-grid scenario, such trust relationship
can be set up through friend invitation and acceptance operations.

Note that the ideal case is that the data producer signs the data,
and the consumer verifies the signature regardless of where the
data was retrieved. In the current stage of deployment, however, we
have to make applications work compatibly with existing systems,
where application data is not signed as NDN packets. Thus in our
implementation, the consumer verifies that whether the signature
is attached by a trusted NDN proxy, not necessarily the original
data producer.

Certification Authority (CA) 

XMPP server 

example.com xmpp.org ndn.xmpp 

NDN Proxy 

Issue certificates 

Issue certificates 

Figure 11: Trust support from the infrastructure

The first trust model is not suitable for communications involv-
ing multiple parties, because it requires any pair of participants to
manually set up trust, putting many burdens on end users. For ex-
ample, XMPP provides a public multi-user chat room that any user
is able to join. To translate it into the off-the-grid scenario, it is pos-
sible that users joining the room do not trust each other. Therefore,
we argue that a more convenient way is to apply the trust model
in Figure 11, which requires the support from infrastructure. In
this trust model, when XMPP uses infrastructure services through
NDN proxy, the verified servers issue certificates for the NDN prox-
ies. As a result, such trust relationships are still maintained in the
off-the-grid scenarios, and the NDN proxies from different parties
share the same trust anchor.

6.3 Name Obfuscation for Privacy
Although encrypting content prevents others from accessing the
data, names, which are in the packet header, it may still leak some
sensitive information. Name obfuscation can be achieved by en-
crypting certain sensitive name components. One of such designs
is ANDaNA [8]. In our applications, we did not include such name
obfuscation mechanisms. We rely on layer-2 protection since it is
reasonably adequate in our use cases: the devices are within one
hop of WiFi connectivity. But if the devices are cross multiple hops
or using open layer-2 links, then name obfuscation may become
necessary.

7 EVALUATION
We have implemented NDN Proxy for IMAP for the purpose of
evaluation. The program is named as mailSync, and it is written
in Java. It has a Mac version to run on the laptop, and an Android
version to run on Android smartphones. We used the IMAP mod-
ule of GreenMail 2, an open-source mail server implementation,
as the IMPA handler to parse and compose IMAP messages. We
also employed the JavaMail library to communicate with remote
IMAP server, i.e., the Gmail cloud server. On the NDN side, each
device runs NFD for the basic NDN functionalities, and the Proxy
is implemented using the JNDN library. In the process of testing,
the Android smartphone runs Gmail, NDN Proxy (mailSync), and
NFD-Android; the laptop runs Thunderbird, NDN Proxy (mailSync),
and NFD. The Android smartphone first retrieves emails from the
Gmail server, then the laptop retrieves emails from the phone via
NDN over local WiFi connectivity (without Internet access). After
further debugging and tuning, we plan to release the code publicly.

During field tests of the programs, we found that WiFi networks
in many places are not amenable to device-to-device or off-the-
grid communication. Many public WiFi networks, e.g., the WiFi
at airports, university campus, shops, and cafeterias, do not allow
multicast traffic due to the security concerns. However, multicast is
the basis for local discovery in both IP and NDN. Disable multicast
means all local discovery mechanisms, IP or NDN, will not work.
Even worse, many public WiFi networks also block unicast com-
munication between two WiFi clients. The intention is to protect
individual users from being attacked by another user on the same
WiFi. The reason that most existing applications are not affected is
they all rely on cloud servers reached through the Internet. How-
ever, this popular setup precludes the possibility of utilizing local
connectivity when Internet is not reachable. Better security/privacy
solutions are definitely needed here. For these reasons, we did not
use public WiFi in our tests. Instead, we turned the smartphone
into a hotspot mode and tethered the laptop to it, which is also a
common use by many users.

8 RELATEDWORK
Off-the-grid TCP/IP Works: Using local broadcast or multicast

to discover services has been done in many protocols and appli-
cations, for instances, IPv6 Address Autoconfiguration [29] and
DNS-based Service Discovery [4]. While service discovery is a nec-
essary piece of the puzzle, it is not adequate for applications to
2Open Source suite of lightweight and sandboxed email servers supporting SMTP,
POP3, and IMAP.



NDNizing Existing Applications: Research Issues and Experiences ICN ’18, September 21–23, 2018, Boston, MA, USA

be fully functional without Internet access. Applications also need
functionalities such as multi-party synchronization and data secu-
rity management. NDN has mechanisms to handle all these tasks
and it provides a common layer to be used by all applications.

Peer-to-Peer Applications: Although many peer-to-peer applica-
tions are able to directly communicate between peers, they are
built as an overlay network on top of the infrastructure. Therefore,
they still depend on infrastructure service to be functional. For
example, Legion is a proposed framework [30] to allow client web
applications to work without servers. Clients replicate data from
servers and synchronize data directly among themselves. However,
Legion still needs infrastructure services in order to build a peer-
to-peer overlay network. In contrast, our work intends to enable
an existing IP application to serve and consume data with direct
app-to-app communication without reliance on any cloud server.
For off-the-grid peer-to-peer applications, they are facing the same
issues as other off-the-grid TCP/IP works.

IP-to-NDN Translation: There is a number of work that translates
TCP/IP traffic from/to NDN traffic so that IP and NDN networks can
co-exist and interoperate, e.g., TCP-to-NDN [17], IP-to-NDN [21],
and IPoC [25]. However, translating TCP/IP traffic at network or
transport layer does not change the networking primitive from
address-centric to data-centric, because the translated NDN traffic
is named either by an end-host identifier or a TCP 5-tuple. This
means some of NDN’s major benefits, including caching, security,
and adaptive forwarding, will not be enjoyed completely. In order
to take full advantage of NDN architecture, we choose to translate
between application protocols (e.g., IMAP, XMPP) and NDN. Not
only does this give each packet a semantically meaningful name,
but also translates the protocol behavior more accurately and more
efficiently.

Li proposes an HTTP-CCN gateway [16] to convert HTTP traffic
into Content-centric Networking (CCN) traffic, in order to intro-
duce real traffic onto a CCN testbed. Similar to TCP-to-NDN and
IP-to-NDN, the goal of HTTP-CCN is to carry HTTP/TCP/IP traffic
over an ICN network between two gateways so that two TCP/IP
based endpoints can still communicate. However, our purpose is to
use NDN to provide the off-the-grid capability to existing applica-
tions. It requires more than protocol translation, as we “NDNize”
an existing application to access data in an NDN network, which in-
cludes protocol translation, data organization, data access, naming,
and security management.

NDN Synchronization Protocols. NDN Synchronization protocols,
short for NDN Sync, provide the functionalities for NDN applica-
tions to reliably synchronize data within the shared namespace
among multiple parties, serving as a transport layer. We find NDN
Sync a suitable and basic mechanism to translate client-server based
applications protocols to NDN in the off-the-grid scenario, where
distributed dataset synchronization is a common usage.

Shang surveys [24] the existing NDN Sync protocols, including
CCNx Sync [19], iSync [10], ChronoSync [39], RoundSync [7] and
PSync [36]. While PSync is originally proposed for the consumers
to synchronize a subset of a large data collection with a single pro-
ducer, and to reduce maintaining consumer states at the producer,
other NDN Sync protocols more focus on synchronizing the full

dataset of a data collection among multiple parties. Various NDN
Syncs are proposed to improve both efficiency and effectiveness
of data synchronization. The key is to efficiently figure out the
differences among multiple states of data collection. In contrast
to CCNx 1.0 Sync that uses the hash of the list of data names as
the local state, iSync utilize a more efficient encoding mechanism -
Invertible Bloom Filter (IBF) [9] to prepresent state. ChronoSync,
RoundSync, and PSync simplifying state representation by adopting
the sequential data naming conventions.

In this paper, we analyze the requirements of NDN sync from the
application’s perspective, especially in the practical translation of
existing mature applications, IMAP and XMPP. We treat NDN Sync
as a basic mechanism that can provide full data synchronization
within a given namespace.

9 CONCLUSIONS
This paper is intended to identify research issues, and to generalize
design patterns of translating existing application-level protocols
to NDN. Such protocol translation enables existing applications
with off-the-grid communication without application changes. As
a concrete basis for our work, we design IMAP/NDN translation
for local email retrieval between two end devices, and XMPP/NDN
translation for local group chat. Based on these efforts, we identify
key common design issues, including application-layer framing,
namespace design, application communication translation, security,
privacy, and real-world deployment challenges. In addition, we
outline out design for the specific protocols, discuss the rationale
behind our design choices, and draw generalizable conclusions. We
have built the NDN proxy that conducts IMAP translation in Java
and Android, tested them between a laptop and an Android phone,
and collected deployment challenges.

ACKNOWLEDGMENTS
We are extremely grateful for the valuable suggestions made by our
Shepherd, John Wroclawski, and detailed comments from anony-
mous reviewers.

This material is based upon work supported by the National
Science Foundation under Grant No. CNS-1629009, CNS-1513505,
and a Huawei grant. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the authors
and do not necessarily reflect the views of the sponsors.

REFERENCES
[1] Alexander Afanasyev, Ilya Moiseenko, Lixia Zhang, et al. 2012. ndnSIM: NDN

simulator for NS-3. University of California, Los Angeles, Tech. Rep 4 (2012).
[2] Alexander Afanasyev, Zhenkai Zhu, Yingdi Yu, Lijing Wang, and Lixia Zhang.

2015. The story of chronoshare, or how ndn brought distributed secure file sharing
back. In Mobile Ad Hoc and Sensor Systems (MASS), 2015 IEEE 12th International
Conference on. IEEE, 525–530.

[3] Jeff Burke. 2017. Browsing an Augmented Reality with Named Data Networking.
In International Conference on Computer Communication and Networks (ICCCN),
International Conference on Computer Communication and Networks (ICCCN).

[4] Stuart Cheshire and Marc Krochmal. 2013. DNS-Based Service Discovery. RFC
6763. https://doi.org/10.17487/RFC6763

[5] David D Clark and David L Tennenhouse. 1990. Architectural considerations
for a new generation of protocols. In ACM SIGCOMM Computer Communication
Review, Vol. 20. ACM, 200–208.

[6] M. Crispin. 2003. INTERNET MESSAGE ACCESS PROTOCOL - VERSION 4rev1.
RFC 3501 (Proposed Standard). http://www.ietf.org/rfc/rfc3501.txt Updated by
RFCs 4466, 4469, 4551, 5032, 5182, 5738, 6186.

https://doi.org/10.17487/RFC6763
http://www.ietf.org/rfc/rfc3501.txt


ICN ’18, September 21–23, 2018, Boston, MA, USA T. Liang et al.

[7] Pedro de-las Heras-Quirós, Eva M Castro, Wentao Shang, Yingdi Yu, Spyridon
Mastorakis, Alexander Afanasyev, and Lixia Zhang. 2017. The design of RoundSync
protocol. Technical Report. Technical Report NDN-0048, NDN.

[8] Steven DiBenedetto, Paolo Gasti, Gene Tsudik, and Ersin Uzun. 2011. ANDaNA:
Anonymous named data networking application. arXiv preprint arXiv:1112.2205
(2011).

[9] David Eppstein, Michael T Goodrich, Frank Uyeda, and George Varghese. 2011.
What’s the difference?: efficient set reconciliation without prior context. In ACM
SIGCOMM Computer Communication Review, Vol. 41. ACM, 218–229.

[10] Wenliang Fu, Hila Ben Abraham, and Patrick Crowley. 2015. Synchronizing
namespaces with invertible bloom filters. In Architectures for Networking and
Communications Systems (ANCS), 2015 ACM/IEEE Symposium on. IEEE, 123–134.

[11] Paolo Gasti, Gene Tsudik, Ersin Uzun, and Lixia Zhang. 2013. DoS and DDoS in
named data networking. In Computer Communications and Networks (ICCCN),
2013 22nd International Conference on. IEEE, 1–7.

[12] Giulio Grassi, Davide Pesavento, Giovanni Pau, Rama Vuyyuru, Ryuji Wakikawa,
and Lixia Zhang. 2014. VANET via named data networking. In Computer Com-
munications Workshops (INFOCOM WKSHPS), 2014 IEEE Conference on. IEEE,
410–415.

[13] Peter Gusev and Jeff Burke. 2015. Ndn-rtc: Real-time videoconferencing over
named data networking. In Proceedings of the 2nd ACM Conference on Information-
Centric Networking. ACM, 117–126.

[14] AKMHoque, Syed Obaid Amin, AdamAlyyan, Beichuan Zhang, Lixia Zhang, and
Lan Wang. 2013. NLSR: named-data link state routing protocol. In Proceedings
of the 3rd ACM SIGCOMM workshop on Information-centric networking. ACM,
15–20.

[15] Siham Khoussi, Davide Pesavento, Lotfi Benmohamed, and Abdella Battou. 2017.
NDN-trace: a path tracing utility for named data networking. In Proceedings of
the 4th ACM Conference on Information-Centric Networking. ACM, 116–122.

[16] Zhaogeng Li, Jun Bi, and Sen Wang. 2013. HTTP-CCN gateway: Adapting HTTP
protocol to Content Centric Network. In Network Protocols (ICNP), 2013 21st IEEE
International Conference on. IEEE, 1–2.

[17] Ilya Moiseenko and Dave Oran. 2016. TCP/ICN: carrying TCP over content
centric and named data networks. In Proceedings of the 3rd ACM Conference on
Information-Centric Networking. ACM, 112–121.

[18] Ilya Moiseenko and Lixia Zhang. 2014. Consumer-producer api for named data
networking. In Proceedings of the 1st ACM Conference on Information-Centric
Networking. ACM, 177–178.

[19] Marc Mosko. 2014. CCNx 1.0 Collection Synchronization. In Technical Report.
Palo Alto Research Center, Inc.

[20] Luca Muscariello, Giovanna Carofiglio, Jordan Auge, and Michele Papalini. 2018.
Hybrid Information-Centric Networking. Internet-Draft draft-muscariello-intarea-
hicn-00. Internet Engineering Task Force. https://datatracker.ietf.org/doc/html/
draft-muscariello-intarea-hicn-00 Work in Progress.

[21] Tamer Refaei, Jamie Ma, Sean Ha, and Sarah Liu. 2017. Integrating IP and NDN
through an extensible IP-NDN gateway. In Proceedings of the 4th ACM Conference
on Information-Centric Networking. ACM, 224–225.

[22] Wentao Shang, Adeola Bannis, Teng Liang, Zhehao Wang, Yingdi Yu, Alexander
Afanasyev, Jeff Thompson, Jeff Burke, Beichuan Zhang, and Lixia Zhang. 2016.
Named data networking of things. In Internet-of-Things Design and Implementa-
tion (IoTDI), 2016 IEEE First International Conference on. IEEE, 117–128.

[23] Wentao Shang, Qiuhan Ding, Alessandro Marianantoni, Jeff Burke, and Lixia
Zhang. 2014. Securing building management systems using named data network-
ing. IEEE Network 28, 3 (2014), 50–56.

[24] Wentao Shang, Yingdi Yu, Lijing Wang, Alexander Afanasyev, and Lixia Zhang.
2017. A Survey of Distributed Dataset Synchronization in Named Data Networking.
Technical Report. Technical Report NDN-0053, NDN.

[25] Susmit Shannigrahi, Chengyu Fan, and Greg White. 2018. Bridging the ICN
Deployment Gap with IPoC: An IP-over-ICN protocol for 5G Networks. In Pro-
ceedings of the 2018 Workshop on Networking for Emerging Applications and
Technologies. ACM, 1–7.

[26] Tian Song, Haowei Yuan, Patrick Crowley, and Beichuan Zhang. 2015. Scalable
name-based packet forwarding: From millions to billions. In Proceedings of the
2nd ACM conference on information-centric networking. ACM, 19–28.

[27] NFD Team. [n. d.]. NFD DeveloperâĂŹs Guide. ([n. d.]).
[28] Jeff Thompson and Jeff Burke. 2014. NDN common client libraries. Technical

Report NDN-0024, Revision 1. NDN Project (2014).
[29] S. Thomson, T. Narten, and T. Jinmei. 2007. IPv6 Stateless Address Autoconfigu-

ration. RFC 4862 (Draft Standard). http://www.ietf.org/rfc/rfc4862.txt
[30] Albert van der Linde, Pedro Fouto, João Leitão, Nuno Preguiça, Santiago

Castiñeira, and Annette Bieniusa. 2017. Legion: Enriching Internet Services
with Peer-to-Peer Interactions. In Proceedings of the 26th International Confer-
ence on World Wide Web. International World Wide Web Conferences Steering
Committee, 283–292.

[31] Hao Wu, Junxiao Shi, Yaxuan Wang, Yilun Wang, Gong Zhang, Yi Wang, Bin Liu,
and Beichuan Zhang. 2017. On Incremental Deployment of Named Data Network-
ing in Local Area Networks. In Proceedings of the Symposium on Architectures for
Networking and Communications Systems. IEEE Press, 82–94.

[32] Cheng Yi, Alexander Afanasyev, Lan Wang, Beichuan Zhang, and Lixia Zhang.
2012. Adaptive forwarding in named data networking. ACM SIGCOMM computer
communication review 42, 3 (2012), 62–67.

[33] Yingdi Yu, Alexander Afanasyev, David Clark, Van Jacobson, Lixia Zhang, et al.
2015. Schematizing trust in named data networking. In Proceedings of the 2nd
International Conference on Information-Centric Networking. ACM, 177–186.

[34] Yingdi Yu, Alexander Afanasyev, and Lixia Zhang. 2015. Name-based access
control. Named Data Networking Project, Technical Report NDN-0034 (2015).

[35] Lixia Zhang, Alexander Afanasyev, Jeffrey Burke, Van Jacobson, Patrick Crowley,
Christos Papadopoulos, Lan Wang, Beichuan Zhang, et al. 2014. Named data
networking. ACM SIGCOMM Computer Communication Review 44, 3 (2014),
66–73.

[36] Minsheng Zhang, Vince Lehman, and Lan Wang. 2017. Scalable name-based data
synchronization for named data networking. In INFOCOM 2017-IEEE Conference
on Computer Communications, IEEE. IEEE, 1–9.

[37] Zhiyi Zhang, Yingdi Yu, Haitao Zhang, Eric Newberry, Spyridon Mastorakis,
Yanbiao Li, Alexander Afanasyev, and Lixia Zhang. 2018. An Overview of Security
Support in Named Data Networking. Technical Report. Technical Report NDN-
0057, NDN.

[38] Weicheng Zhao, Yajuan Qin, Deyun Gao, Chuan Heng Foh, and Han-Chieh Chao.
2017. An efficient cache strategy in information centric networking vehicle-to-
vehicle scenario. IEEE Access 5 (2017), 12657–12667.

[39] Zhenkai Zhu and Alexander Afanasyev. 2013. Let’s ChronoSync: Decentralized
dataset state synchronization in Named Data Networking. In 2013 21st IEEE
International Conference on Network Protocols (ICNP). IEEE, 1–10.

https://datatracker.ietf.org/doc/html/draft-muscariello-intarea-hicn-00
https://datatracker.ietf.org/doc/html/draft-muscariello-intarea-hicn-00
http://www.ietf.org/rfc/rfc4862.txt

	Abstract
	1 Introduction
	2 Design Rationale
	2.1 Challenges in Deployment
	2.2 Application Support of NDN
	2.3 Off-the-grid Communication

	3 System Overview
	4 Data Translation
	4.1 Application Layer Framing
	4.2 Defining Application Data Units (ADUs)
	4.3 Namespace Design
	4.4 Data Translation Procedure

	5 Translation of Communication Protocol
	5.1 NDN Communication Patterns
	5.2 Translating Communication Patterns
	5.3 Name Construction and Discovery
	5.4 Control and Management

	6 Security Issues
	6.1 Data-Centric Security
	6.2 Trust Model and Configuration
	6.3 Name Obfuscation for Privacy

	7 Evaluation
	8 Related Work
	9 Conclusions
	References

