
Named Data Networking of Things:
NDN-RIOT, NDN-PI

Alex Afanasyev

Florida International University

1

IoT over ICN Tutorial @ ACM ICN 2017
September 26, 2017

Berlin, Germany

IoT Apps and Services

Link Layer (Ethernet/WiFi/Bluetooth/802.15.4/…)
with optional adaptation sub-layer

IP

TCP, UDP, …

DHCP, …

CoAPHTTP

TLS DTLS

DNS

DNSSEC

Complexity and Semantic Mismatch for IP/IoT

2

• App: “Living room frontal view
feed”

• Network:
• Request stream (HTTP/CoAP)

• Connect to camera (TCP/IP)

• +
• Lookup mapping “Living room” -> camera URI

• Connect to AlexHome.com (cloud?) service

• DNS lookup IP of AlexHome.com service

• DHCP to assign IP addresses to all
devices

IoT over ICN Tutorial @ ACM ICN 2017

Named Data Networking of Things

3

• App: “Living room frontal view feed”
• /AlexHome.com/LivingRoom/VideoFeed/FrontView/mp4/_frame=12/_

chunk=20

• Network:
• Use the name to send request to my camera responsible for

Living’s room front view

• OR retrieve data from caches

• +
• Cameras provision with “identity name” that defines what

they are and what data names they produce

• Can announce name prefixes or respond to local broadcasts

NDN

Ethernet, WiFi, …

CSMA, Sonet, …

copper, fiber, radio, …

IoT over ICN Tutorial @ ACM ICN 2017

ICN/NDN “Edge” for IoT

4

• Bring IoT semantics to the network layer

• Name the “things” and operations on “things”
• “Living room frontal view feed”, “CO level in kitchen”

• “blood pressure”, “body temperature”

• “max/min/avg pH of soil in specific point of US soil grid”

• Focus on data associated with things, not devices

• Secure data directly

W. Shang et. al, "Named Data Networking of Things,” in proc. of IoTDI’2016IoT over ICN Tutorial @ ACM ICN 2017

Smarter IoT with Low-cost Devices

5

• Hardware: ultra low cost, longevity
• Constrained battery, low-power networking, limited memory, low CPU

• ~ 32-bit ARM, 48 MHz, 32KB RAM, 256KB flash

• Application getting smarter and more powerful
• Need integration with public Internet and cloud service without requiring

gateways

• Need for data-centric security, local trust management

• Need auto-discovery and auto-configuration

•Named Data Networking
• common protocol for all applications and network environments

W. Shang, et. al, “Breaking out of the cloud: local trust management and
rendezvous in Named Data Networking of Things,” to appear in IoTDI’17IoT over ICN Tutorial @ ACM ICN 2017

NDN-RIOT Architecture Highlights

6

NDN
app

NDN-
RIOT

module

Net
Device
Driver

Sched Interrupt
HandlerIPC

CPU Timer NIC Peripherals

IPC IPCThreads

RIOT-OS Core

Hardware

• Support for NDN packet format
for limited MTU links

• Support of data-centric security,
including ECDSA and HMAC
signatures, AES encryption

• Replaceable forwarding strategies

• Support of transmission
(+fragmentation) over IEEE
802.15.4 and Ethernet

• Simple application API

• A few basic examples
• https://github.com/named-data-

iot/ndn-riot-examples
Open source, contributions welcome

https://github.com/named-data-iot/ndn-riotIoT over ICN Tutorial @ ACM ICN 2017

Memory-Optimized Packet Decoding

• Shared memory block structure to move packets
• avoid memory copy in most cases

•On-demand packet field extraction
• avoid memory for decoded meta data

7IoT over ICN Tutorial @ ACM ICN 2017

Security Support

8

• ECDSA
• micro-ecc library (https://github.com/kmackay/micro-ecc)
• secp256r1 curve with 64-byte signatures

• deterministic signing (RFC 6979) given lack of good entropy on many
current devices
• keys need to be generated outside the device

• no RSA
• too much overhead and too expensive to produce signatures

•HMAC
• RIOT-OS built-in APIs

IoT over ICN Tutorial @ ACM ICN 2017

Packet Forwarding

9

• PIT
• exact match for interest
• “any” prefix match for data (all interests that are prefix of the data)

• FIB
• longest prefix match for interest names
• static compile-time prefix registration
• IPC-based run-time prefix registration (for local apps)

• CS
• “any” match for interests (a data for which interest is a prefix)
• compile-time adjustable size (~24KB default settings)
• FIFO policy

• Replaceable forwarding strategies

• Work in progress
• Support for basic Interest selectors
• Extend dynamic prefix registration and maintenance

IoT over ICN Tutorial @ ACM ICN 2017

L2 Communication

10

• Run directly over layer 2 interfaces
• IEEE 802.15.4
• send packets to FF:FF (broadcast)

• Ethernet (e.g., debugging on native plaform)
• send packets to FF:FF:FF:FF:FF:FF:FF (broadcast)

• Simple hop-by-hop fragmentation if needed

 0 1 2
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
+-+
|1|0|M| SEQ | Identification |
+-+

IoT over ICN Tutorial @ ACM ICN 2017

Application API

11

ndn_app_create ndn_app_run ndn_app_destroy

ndn_app_schedule

ndn_app_express_interest

ndn_app_register_prefix

ndn_app_put_data

NDN-RIOT Thread

IoT over ICN Tutorial @ ACM ICN 2017

12

NDN ON RIOT-OS
{ WENTAO SHANG, ALEX AFANASYEV, AND LIXIA ZHANG } UCLA

MOTIVATION
• Named Data Networking (NDN) has shown

great potential in supporting network applica-
tions in the IoT environments [1].

• The goal of this project is to bring NDN proto-
col support to the constrained IoT devices with
100s of KB memory and low-power CPU.

• We build on top of a popular IoT software plat-
form called RIOT-OS [2].

RIOT-OS FEATURES

• Common OS abstraction across multiple plat-
forms (ARM, Arduino, MSP430)

• Multi-threading + IPC
• Custom network stack
• C/C++ programming environment
• Standard build tools (gcc, make)
• Simulator for testing on Linux PCs

REFERENCES

[1] W. Shang, A. Bannis, T. Liang, Z. Wang, Y. Yu,
A. Afanasyev, J. Thompson, J. Burke, B. Zhang,
and L. Zhang. Named Data Networking of
Things. In Proceedings of 1st IEEE International Con-

ference on Internet-of-Things Design and Implementa-

tion (IoTDI’2016). (Invited paper).

[2] RIOT - The friendly Operating System for the Inter-
net of Things. http://www.riot-os.org/.

SOURCE CODE
The source code of this work is available at
https://github.com/wentaoshang/RIOT/
tree/ndn/. It is currently released under LGPL
v2.1, the same license used by RIOT-OS itself.

ACKNOWLEDGMENT
This work has been supported by the National
Science Foundation under award CNS-1345318,
CNS-1345142, CNS-1455794, and CNS-1455850.

SYSTEM DESIGN

Hardware

OS core

Threads

CPU Timer Net Device

Sched IPC Soft_IRQ

APP NDN
Net

Device
Driver

IPC IPC

Software architecture of NDN on RIOT-OS

The NDN protocol is implemented as a kernel thread.
The IPC channel is used for:

• Passing NDN packets from & to APP and network
device driver threads

• Sending configuration commands (e.g., add faces,
register prefixes)

Currently implemented features:

• Basic packet forwarding logic (PIT, FIB, CS)
• Support for Ethernet and 802.15.4
• Memory efficient packet encoding & decoding
• HMAC-SHA256 data signing and verification

APPLICATION INTERFACE
The NDN code on RIOT-OS is C99-compatible.

Object Interface

Name ndn_name_from_uri, ndn_name_append,
ndn_name_print, ndn_name_compare_block,
ndn_name_get_component_from_block

Interest ndn_interest_create,
ndn_interest_get_name,
ndn_interest_get_nonce,
ndn_interest_get_lifetime

Data ndn_data_create, ndn_data_get_name,
ndn_data_get_content,
ndn_data_get_metainfo,
ndn_data_verify_signature

APP Handle ndn_app_create, ndn_app_run,
ndn_app_destroy, ndn_app_schedule,
ndn_app_express_interest,
ndn_app_register_prefix,
ndn_app_put_data

List of API for NDN APP on RIOT-OS

Simple NDN consumer on RIOT-OS

DEMO APPLICATION: NDN-PING

This demo application shows two RIOT-OS nodes
running NDN-Ping client and servers respectively
in a emulated network environment on a Ubuntu
15.10 machine. NDN packets are sent over Ether-
net directly.

Client Server
Interest

Data

Ethernet

Emulated testbed NDN-Ping client

NDN-Ping server Tcpdump output of network packets

text data bss dec hex file name

39636 228 11204 51068 c77c ndn_ping.elf

Code size & static memory usage (compiled for SAM R21 IoT board)

LIMITATIONS & FUTURE WORK

• Currently the code is only tested in emulated
environments. The next step is to try it out
on a real IoT device.

• The current implementation does not have
routing support or FIB/RIB management.
An interesting research direction is to pro-
vide routing functionality for constrained

NDN-IoT networks.
• The current implementation does not in-

clude advanced NDN features such as for-
warding strategies or cache management
policies. It is yet unclear whether it is nec-
essary to support those features on con-
strained devices.

NDN ON RIOT-OS
{ WENTAO SHANG, ALEX AFANASYEV, AND LIXIA ZHANG } UCLA

MOTIVATION
• Named Data Networking (NDN) has shown

great potential in supporting network applica-
tions in the IoT environments [1].

• The goal of this project is to bring NDN proto-
col support to the constrained IoT devices with
100s of KB memory and low-power CPU.

• We build on top of a popular IoT software plat-
form called RIOT-OS [2].

RIOT-OS FEATURES

• Common OS abstraction across multiple plat-
forms (ARM, Arduino, MSP430)

• Multi-threading + IPC
• Custom network stack
• C/C++ programming environment
• Standard build tools (gcc, make)
• Simulator for testing on Linux PCs

REFERENCES

[1] W. Shang, A. Bannis, T. Liang, Z. Wang, Y. Yu,
A. Afanasyev, J. Thompson, J. Burke, B. Zhang,
and L. Zhang. Named Data Networking of
Things. In Proceedings of 1st IEEE International Con-

ference on Internet-of-Things Design and Implementa-

tion (IoTDI’2016). (Invited paper).

[2] RIOT - The friendly Operating System for the Inter-
net of Things. http://www.riot-os.org/.

SOURCE CODE
The source code of this work is available at
https://github.com/wentaoshang/RIOT/
tree/ndn/. It is currently released under LGPL
v2.1, the same license used by RIOT-OS itself.

ACKNOWLEDGMENT
This work has been supported by the National
Science Foundation under award CNS-1345318,
CNS-1345142, CNS-1455794, and CNS-1455850.

SYSTEM DESIGN

Hardware

OS core

Threads

CPU Timer Net Device

Sched IPC Soft_IRQ

APP NDN
Net

Device
Driver

IPC IPC

Software architecture of NDN on RIOT-OS

The NDN protocol is implemented as a kernel thread.
The IPC channel is used for:

• Passing NDN packets from & to APP and network
device driver threads

• Sending configuration commands (e.g., add faces,
register prefixes)

Currently implemented features:

• Basic packet forwarding logic (PIT, FIB, CS)
• Support for Ethernet and 802.15.4
• Memory efficient packet encoding & decoding
• HMAC-SHA256 data signing and verification

APPLICATION INTERFACE
The NDN code on RIOT-OS is C99-compatible.

Object Interface

Name ndn_name_from_uri, ndn_name_append,
ndn_name_print, ndn_name_compare_block,
ndn_name_get_component_from_block

Interest ndn_interest_create,
ndn_interest_get_name,
ndn_interest_get_nonce,
ndn_interest_get_lifetime

Data ndn_data_create, ndn_data_get_name,
ndn_data_get_content,
ndn_data_get_metainfo,
ndn_data_verify_signature

APP Handle ndn_app_create, ndn_app_run,
ndn_app_destroy, ndn_app_schedule,
ndn_app_express_interest,
ndn_app_register_prefix,
ndn_app_put_data

List of API for NDN APP on RIOT-OS

Simple NDN consumer on RIOT-OS

DEMO APPLICATION: NDN-PING

This demo application shows two RIOT-OS nodes
running NDN-Ping client and servers respectively
in a emulated network environment on a Ubuntu
15.10 machine. NDN packets are sent over Ether-
net directly.

Client Server
Interest

Data

Ethernet

Emulated testbed NDN-Ping client

NDN-Ping server Tcpdump output of network packets

text data bss dec hex file name

39636 228 11204 51068 c77c ndn_ping.elf

Code size & static memory usage (compiled for SAM R21 IoT board)

LIMITATIONS & FUTURE WORK

• Currently the code is only tested in emulated
environments. The next step is to try it out
on a real IoT device.

• The current implementation does not have
routing support or FIB/RIB management.
An interesting research direction is to pro-
vide routing functionality for constrained

NDN-IoT networks.
• The current implementation does not in-

clude advanced NDN features such as for-
warding strategies or cache management
policies. It is yet unclear whether it is nec-
essary to support those features on con-
strained devices.

NDN ON RIOT-OS
{ WENTAO SHANG, ALEX AFANASYEV, AND LIXIA ZHANG } UCLA

MOTIVATION
• Named Data Networking (NDN) has shown

great potential in supporting network applica-
tions in the IoT environments [1].

• The goal of this project is to bring NDN proto-
col support to the constrained IoT devices with
100s of KB memory and low-power CPU.

• We build on top of a popular IoT software plat-
form called RIOT-OS [2].

RIOT-OS FEATURES

• Common OS abstraction across multiple plat-
forms (ARM, Arduino, MSP430)

• Multi-threading + IPC
• Custom network stack
• C/C++ programming environment
• Standard build tools (gcc, make)
• Simulator for testing on Linux PCs

REFERENCES

[1] W. Shang, A. Bannis, T. Liang, Z. Wang, Y. Yu,
A. Afanasyev, J. Thompson, J. Burke, B. Zhang,
and L. Zhang. Named Data Networking of
Things. In Proceedings of 1st IEEE International Con-

ference on Internet-of-Things Design and Implementa-

tion (IoTDI’2016). (Invited paper).

[2] RIOT - The friendly Operating System for the Inter-
net of Things. http://www.riot-os.org/.

SOURCE CODE
The source code of this work is available at
https://github.com/wentaoshang/RIOT/
tree/ndn/. It is currently released under LGPL
v2.1, the same license used by RIOT-OS itself.

ACKNOWLEDGMENT
This work has been supported by the National
Science Foundation under award CNS-1345318,
CNS-1345142, CNS-1455794, and CNS-1455850.

SYSTEM DESIGN

Hardware

OS core

Threads

CPU Timer Net Device

Sched IPC Soft_IRQ

APP NDN
Net

Device
Driver

IPC IPC

Software architecture of NDN on RIOT-OS

The NDN protocol is implemented as a kernel thread.
The IPC channel is used for:

• Passing NDN packets from & to APP and network
device driver threads

• Sending configuration commands (e.g., add faces,
register prefixes)

Currently implemented features:

• Basic packet forwarding logic (PIT, FIB, CS)
• Support for Ethernet and 802.15.4
• Memory efficient packet encoding & decoding
• HMAC-SHA256 data signing and verification

APPLICATION INTERFACE
The NDN code on RIOT-OS is C99-compatible.

Object Interface

Name ndn_name_from_uri, ndn_name_append,
ndn_name_print, ndn_name_compare_block,
ndn_name_get_component_from_block

Interest ndn_interest_create,
ndn_interest_get_name,
ndn_interest_get_nonce,
ndn_interest_get_lifetime

Data ndn_data_create, ndn_data_get_name,
ndn_data_get_content,
ndn_data_get_metainfo,
ndn_data_verify_signature

APP Handle ndn_app_create, ndn_app_run,
ndn_app_destroy, ndn_app_schedule,
ndn_app_express_interest,
ndn_app_register_prefix,
ndn_app_put_data

List of API for NDN APP on RIOT-OS

Simple NDN consumer on RIOT-OS

DEMO APPLICATION: NDN-PING

This demo application shows two RIOT-OS nodes
running NDN-Ping client and servers respectively
in a emulated network environment on a Ubuntu
15.10 machine. NDN packets are sent over Ether-
net directly.

Client Server
Interest

Data

Ethernet

Emulated testbed NDN-Ping client

NDN-Ping server Tcpdump output of network packets

text data bss dec hex file name

39636 228 11204 51068 c77c ndn_ping.elf

Code size & static memory usage (compiled for SAM R21 IoT board)

LIMITATIONS & FUTURE WORK

• Currently the code is only tested in emulated
environments. The next step is to try it out
on a real IoT device.

• The current implementation does not have
routing support or FIB/RIB management.
An interesting research direction is to pro-
vide routing functionality for constrained

NDN-IoT networks.
• The current implementation does not in-

clude advanced NDN features such as for-
warding strategies or cache management
policies. It is yet unclear whether it is nec-
essary to support those features on con-
strained devices.

IoT over ICN Tutorial @ ACM ICN 2017

Getting Started with NDN-RIOT Examples

• Downloading

• mkdir riot

• cd riot

• git clone https://github.com/named-data-iot/RIOT

• git clone https://github.com/named-data-iot/ndn-riot

• git clone https://github.com/named-data-iot/ndn-riot-examples

• Compiling an example

• cd ndn-riot-examples/<APP>

• For host architecture (for debugging)

• make

• For a specific RIOT board

• make BOARD=samr21-xpro

• make flash BOARD=samr21-xpro # to flash firmware

• make term BOARD=samr21-xpro # to access board via serial interface

13

ndn-benchmark

ndn-consumer

ndn-ping

ndn-producer

ndn-rtt

ndn-template

IoT over ICN Tutorial @ ACM ICN 2017

14

Stack Performance Numbers

184 µs

13 µs

8 µs

28 µs

25 µs

2 µs

1,806 µs

451,215 µs

500,115 µs

3 µs

4 µs

282 µs

11 µs

7 µs

29 µs

23 µs

2 µs

1,333 µs

269,314 µs

294,225 µs

2 µs

4 µs

1,366 nJ

92 nJ

69 nJ

251 nJ

221 nJ

24 nJ

16,000 nJ

4,580,000 nJ

5,000,000 nJ

29 nJ

43 nJ

1µs 10µs 100µs 1,000µs 10,000µs 100,000µs 1,000,000µs 10,000,000µs

URI to Name

Get Name size

Get Name component

Append to Name

Create Interest

Get Interest Name

Create/Verify Data (HMAC)

Create Data (ECDSA)

Verify Data (ECDSA)

Get Data Name

Get Data Content

IoTLab-M3 (power)

IoTLab-M3 (time)

SAMR21-XPRO (time)

A sensing app can create, sign, and transmit one data
packet, every minute for half a year on a single

battery charge

IoT over ICN Tutorial @ ACM ICN 2017

Stack Processing Delay

15

IEEE 802.15.4
MTU: 102 bytes

Fixed data rate: 250 Kbps

ms
0 ms 50 ms100 ms150 ms200 ms250 ms300 ms350 ms

Fetching from local cache

Fetching from remote cache

Fetching from remote node (generated data)

100 bytes

196 bytes

IoT over ICN Tutorial @ ACM ICN 2017

Other IoT-Related NDN Efforts

16

• NDN-BMS: encryption-based access control
• Wentao Shang, Qiuhan Ding, Alessandro Marianantoni, Jeff Burke, Lixia Zhang.

"Securing Building Management Systems Using Named Data Networking.” In IEEE
Network, Vol. 28, no. 3, May 2014.

• NDN-ACE: authorization framework for actuation apps
• W. Shang, Y. Yu, T. Liang, B. Zhang, and L. Zhang, “NDN-ACE: Access Control for

Constrained Environments over Named Data Networking,” NDN Project, Tech.
Rep. NDN-0036, Revision 1, December 2015.

• NDN on Arduino: minimal app for Arduino
• https://github.com/ndncomm/ndn-btle

• https://redmine.named-data.net/projects/ndn-embedded/wiki

IoT over ICN Tutorial @ ACM ICN 2017

Options to bring NDN stack to Raspberry Pi 1/2/3

17

• If running actual Ubuntu repo
• Can you PPA repository to install pre-compiled binaries

• sudo apt-get install software-properties-common
• sudo add-apt-repository ppa:named-data/ppa
• sudo apt-get update
• sudo apt-get install nfd

• If running Raspbian
• Install from source on Pi itself (could be slow)
• Install using cross-compilation

• Try https://gitlab.com/named-data/docker-raspberry-pi-ndn-cross-compiler docker
app

• It is still in progress and needs feedback

IoT over ICN Tutorial @ ACM ICN 2017

