NDN Security

Alex Afanasyev

Florida International University

IoT over ICN Tutorial @ ACM ICN 2017 September 26, 2017 Berlin, Germany

Named Data Networking Communication Model

Interest packets

Name • Optional fields

Data packets

Name Content Signature Building security principles into the networking architecture

NDN: Just Three Simple Ideas

1. Per Interest, per hop forwarding state

- → Creating closed feedback loop
 - Measure performance, detect failures
- Enabling multi-path forwarding
 - Add a strategy module to assist the forwarding decisions

2. Hierarchical naming of data

 Fetching data by application-defined, semantically meaningful names

3. Securing every data packet

Removing dependency on transport security

Immutable data

Application-Defined, Semantically Meaningful Names for All Data Packets

Fetching Data by Application Names enables

- Zero configuration and auto-discovery
- Seamless ad hoc communication
- Integration of computation, storage, networking
- Ability to use multiple interfaces at once
- And more

Zero Configuration and Auto Discovery

- Utilizing well defined naming conventions
 - "/_thisRoom": Interest carrying this prefix travels within local one room environment (e.g., one hop)
 - local: WiFi, Ethernet, etc; no long distance like LTE
 - "/Projector": identifies type of the device for which the interest is intended
 - Once projector located, may have further exchange on model/parameter details
 IoT over ICN Tutorial @ ACM ICN 2017

Seamless Ad Hoc Communication

Integration of Networking, Storage & Computation

Use of Multiple Interfaces at Once

Data-Centric Security of NDN

Security Built-In For Every Data Packet

- In the Internet you secure your path..
- ..but the server may still be hacked!

- In NDN you sign the data with a digital signature..
- ..so the users know when they get bad data!
- Data secured in motion and at rest

/FIU
/Campus/GL
/ARFeed/FrontView
/mp4/_frame=12/_chunk=20

Authentication of NDN Data

Key Privilege Separation

/FIU/Campus/GL/ARFeed/FrontView /mp4/_frame=12/_chunk=20

/UCLA/Camera/.../Campus /RoyceHall/Camera/KEY

A frame from a camera installed in the Royce Hall

/FIU/Campus/GL/ARFeed/FrontView /mp4/_frame=12/_chunk=20

/Samsung/TV/KEY

A forged frame

Name-Based Limit of Key Power

Can only be signed by

ARFeed data to be valid, must be signed with a "Camera" key under the same name hierarchy

Flexible Restrictions through Namespace Design

Trust Schema: Name-Based Definition of Trust Model

- A formal language to formally describe trust model
 - Schematize data and key name relationships

An Example of Trust Schema for Smart Campus

```
(:Prefix:<>*)(:Location:<>?)<ARFeed>[View]<mp4><frame><chunk>
                                     Camera(Prefix, Location, View)
(:Prefix:<>*)<Cameras>[cam-id](:Location:<>?)<View>[View]<KEY>[key-id]
                                               Faculty(Prefix, Location)
(:Prefix:<>*)<Faculty>[user](:Location:<>?)<KEY>[key-id]
                                 LocalAnchor(Prefix)
                                                               General Trust Model
```


/FIU/KEY/_id=I

Trust Model Specialization for FIU campus 7

Privilege Separation Through Naming

Trust Schema as an Automation Tool

Trust Schema as a Bag of Bits

- Can be distributed and updated using NDN mechanisms
- Secured as any other data packet

- My phone can reliably validate the received video feed data
- Camera can properly sign video feed data
- Camera can validate commands from my phone
- Routers can validate data and authorize requests

Data-Centric Secrecy

Name-Based Confidentiality and Access Control

Confidentiality and Access Control Requirements

- Data-centricity
 - Confidential "end-to-end" (app-to-app), in motion or at rest
- Flexible controls
 - Granting access to publish/read at fine granularities
 - Changeable policies at any time
- Asynchrony
 - No tight coupling between distributed data production and access granting
- Scalability
 - Manageable number of encryption/decryption keys
- Multi-party
 - Seamless coordination of control among distributed data producers and consumers

Name-Based Access Control (NAC)

NAC with Attribute-Based Encryption

Attribute authority as a level of indirection

Control Granularity

 Naming conventions to leverage hierarchical scopes for read and write access

- Based on data type
 - PG-4 vs PG-6
 - Level1 vs Level2
- Based on data attributes
 - Time
 - Location

Takeaway Points

- NDN: a great enabler for boosting secure, reliable, yet simple IoT/edge networking
- Key idea: letting network and applications share the same namespace
 - Enabling ad hoc, DTN communication via established namespace
 - Integrating networking, storage, processing via named data
 - Directly securing data
 - Leveraging names of data and keys
 - To define trust schema for distributed authentication and authorization
 - To define groups and access permissions in distributed (decentralized) way