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ABSTRACT

A unique feature of Named Data Networking (NDN) is that
its forwarding plane can detect and recover from network
faults on its own, enabling each NDN router to handle net-
work failures locally without relying on global routing con-
vergence. This new feature prompts us to re-examine the
role of routing in an NDN network: does it still need a rout-
ing protocol? If so, what impact may an intelligent forward-
ing plane have on the design and operation of NDN routing
protocols? Through analysis and extensive simulations, we
show that routing protocols remain highly beneficial in an
NDN network. Routing disseminates initial topology and
policy information as well as long-term changes in them, and
computes the routing table to guide the forwarding process.
However, because the forwarding plane is capable of detect-
ing and recovering from failures quickly, routing no longer
needs to handle short-term churns in the network. Freeing
routing protocols from short-term churns can greatly im-
prove their scalability and stability, enabling NDN to use
routing protocols that were previously viewed as unsuitable
for real networks.
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1. INTRODUCTION
Named Data Networking (NDN) [13, 34] is a new network

architecture that changes the basic network service seman-
tics from “delivering packet to a given destination” to “re-
trieving data with a given name.” NDN communication is
receiver-driven: a data consumer sends Interest packets car-
rying the names of desired data; any node in the network
can return Data packets that have matching names to satisfy
the Interests. This two-way Interest-Data packet exchange
takes the same network path but in opposite directions.

Symmetric Interest-Data exchange and in-network forward-
ing state enable a unique feature of NDN – adaptive for-
warding ([32, 31]). More specifically, a node expects a Data
packet to come back from the same interface where it for-
warded the Interest within a reasonable time period (e.g.,
round-trip time), otherwise it should get a timeout or re-
ceive a NACK packet [31], which signals a failure of this at-
tempt. Upon detection of a failure, the node can then send
the Interest to other interfaces to explore alternate paths.
This built-in failure detection and recovery capability works
on the forwarding plane, with no intervention from the con-
trol plane. Our earlier work [31] shows that NDN’s adaptive
forwarding can handle link failures, prefix hijacking, and
congestion control more effectively than IP networks.

Having an intelligent and adaptive forwarding plane raises
new research questions. Today’s IP networks put all intelli-
gence into routing, which disseminates topology and policy
information, computes routes, detects and recovers from fail-
ures while the data plane merely forwards packets according
to the FIB. When the data plane has its own adaptability,
are routing protocols still needed? If so, for what purpose
and to what extent? If some of routing’s tasks can be of-
floaded to forwarding, would that bring positive impact on
routing protocols’ design and operation, e.g., making rout-
ing more scalable and stable?

In this paper we investigate the role of routing in NDN
networks. Through analysis, design, and extensive simu-
lation, we find that a routing protocol is highly beneficial
in bootstrapping the forwarding plane for effective data re-
trieval, and in efficient probing of new links or recovered
links. However, NDN routing does not need to converge fast
following network changes, which can be handled by adap-
tive forwarding more promptly. This enables one to signif-
icantly improve the scalability and stability of the routing
system using larger keep-alive timer values that ignore short-
term failures. Furthermore, routing algorithms that would
not work well in today’s IP networks may work fine in an
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NDN network due to routing’s reduced role in bootstrapping
adaptive forwarding.

The rest of this paper is organized as follows. Section 2
reviews NDN with a focus on the adaptive forwarding plane.
Section 3 discusses the role of routing in both IP and NDN.
The coordination of NDN routing and forwarding is ex-
plained in Section 4. Section 5 evaluates the performance
of the coordination. Section 6 discusses other possible rout-
ing schemes for NDN. Section 7 presents related work and
Section 8 concludes the paper.

2. NDN FORWARDING OVERVIEW
Each NDN packet carries a name field that uniquely iden-

tifies a piece of data, e.g., /ndn/papers/routing.pdf/seg1.
NDN routers forward Interests based on the names, and
keep forwarding state for each pending Interest. When Data
packets arrive, routers use names to match them to corre-
sponding pending Interests and forward them accordingly.
Each Interest also carries a nonce field that can be used to
detect forwarding loops. In this section we briefly review
NDN’s forwarding process and how it handles link failures.

2.1 Forwarding Process
There are three key data structures in NDN’s node model,

i.e., Forwarding Information Base (FIB), Pending Interest
Table (PIT) and Content Store (CS). FIB serves as the for-
warding table. It is different from the FIB in IP routers in
that it is indexed by name prefixes instead of IP prefixes, and
each FIB entry may provide multiple interfaces instead of a
single best interface for each name prefix. Unlike FIB, PIT
and CS are unique to NDN. Both PIT and CS are indexed by
names. A PIT entry records incoming and outgoing inter-
face(s) of an Interest, and is used to guide Data forwarding.
CS is a temporary cache of Data packets that can speed up
the satisfaction of Interests.

In NDN, the forwarding process works as follows. When a
router receives an Interest, it first checks the Interest name
against the CS and returns the Data if there is a match.
Otherwise, the router checks the Interest name against the
PIT. If a PIT entry already exists, i.e., the Interest has al-
ready been forwarded but no Data has been returned yet,
the router simply adds the incoming interface of the Inter-
est to the PIT entry. If no PIT entry exists, the router adds
a new PIT entry and further looks up the Interest name in
the FIB using longest prefix match. If a matching FIB entry
is found, the Interest is forwarded by a forwarding strategy
module [13]. Otherwise, the router cannot satisfy the Inter-
est and may send a NACK back to the incoming interface
of the Interest [31]. When a router receives a Data packet,
it checks the Data name against the PIT. If a PIT entry is
found, the Data is stored in the CS and further forwarded
to the incoming interfaces of the corresponding Interests,
which have been recorded in the PIT. Otherwise, the Data
is dropped since it is either unrequested or no longer wanted.

The forwarding strategy associated with the name space
of an Interest determines whether and how to forward the
Interest. It may take such information as ranking from the
routing protocol, interface status, round-trip time (RTT)
and congestion level into consideration. In this paper we
adopt the forwarding strategy proposed in [31]. For each
name prefix, each interface is assigned a color code depend-
ing on its current working status. It is Green for a working
interface, Red if the interface is not working, and Yellow

Figure 1: A simple network example.

if the status is uncertain. The forwarding strategy always
prefers Green interfaces over Yellow ones, and never uses
Red interfaces to forward Interests.

2.2 Failure Recovery
NDN’s two-way symmetric traffic flow enables fast fault

detection. Routers can calculate RTT for each Interest-Data
exchange, which can be used as a prediction for future In-
terests. After forwarding an Interest, a router starts a timer
based on the average of previous RTTs; potential network
problems can be detected if no Data is received before the
timer expires. With Interest NACKs [31], fault detection
and notification is even faster. When network problems are
detected, routers can explore alternative paths freely with-
out worrying about loops, since loops can be detected by
checking the nonce field carried in Interests. Fast fault de-
tection and loop-free forwarding are the two unique features
that make NDN’s forwarding plane smart and adaptive –
routers are able to handle network faults such as prefix hi-
jacking, failures and congestion locally at the forwarding
plane [31].

We use the simple example in Figure 1 to illustrate how
NDN routers handle link failures. The cost of the links are
marked in the figure; routers rank the interfaces using the
cost of their best paths towards the destination. When there
is no failure in the network, A uses B as its primary next
hop for content provided byD. InterfaceA-B will be marked
Green as long as Data continues to flow from B to A. When
link B-D fails, A will keep sending Interests to B at first.
However, B cannot satisfy the Interests due to the failure,
so it will send NACKs back to A. Upon receiving a NACK,
A will mark A-B Yellow and retry the next best interface,
in this case A-C. Since there is no failure on this path,
Data will flow back through path D-C-A. A will then mark
interface A-C Green and start using C as the primary next
hop.

3. ROLE OF ROUTING
Since NDN’s forwarding model is a strict superset of the

IP model, any routing scheme that works well for IP should
also work well for NDN [13]. However, today’s IP routing
protocols suffer from issues such as slow convergence or poor
scalability. On the other hand, NDN has a smart and pow-
erful forwarding plane, which is able to take over part of
routing’s responsibility in IP. In this section, we first review
IP routing, and then rethink the role of routing in NDN.

3.1 Routing in IP
IP’s routing plane is intelligent and adaptive, but its for-

warding plane is stateless and strictly follows routing. There-
fore the routing plane is also regarded as the control plane.
Routing is responsible for building the routing table and
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maintaining it in face of network changes, including both
long-term topology and policy changes as well as short-term
churns. When there is a change in the network, routers
need to exchange routing updates with each other in or-
der to reach new global consistency. The time period after a
change happens and before all routers agree on the new rout-
ing state is called the routing convergence period. IP routing
protocols need to converge fast in order to reduce packet loss
and resume packet delivery after network changes.

However, fast routing convergence is challenging in large
operational networks. The fundamental reason is that it
conflicts with other design goals for routing protocols, i.e.,
routing stability and scalability. Routing stability ensures
stable routing paths within the network. It is important for
applications that suffer from RTT fluctuation; it also helps
routers achieve traffic engineering goals. Routing scalability
is essential for supporting a large number of nodes, links and
prefixes1 in the network. For link-state routing, each router
knows the entire topology. These protocols can converge
fast, but at the cost of poor stability and limited scalability.
For distance/path-vector routing, routers do not have a full
knowledge of the topology. They are able to achieve better
scalability, but the convergence time may be as long as tens
of minutes. Below we use link-state routing as an example
to explain the issues with today’s IP routing protocols.

The routing convergence period can be divided into four
phases, i.e., failure detection, update propagation, route com-
putation and FIB update. In link-state routing, routers peri-
odically exchange HELLO messages to maintain connection:
if no HELLO message is received within the DEAD interval,
the link is considered down. Previous research ([7, 11]) rec-
ommended setting the HELLO interval to be on the order
of milliseconds in order to detect failures quickly. However,
this not only increases overhead but also affects routing sta-
bility, since a temporarily congested link may be mistakenly
considered fluctuating down and up. After a link failure is
detected, attached routers need to generate routing updates
and propagate them to the rest of the network; when a router
receives a routing update, it needs to recompute the routing
table. To achieve fast routing convergence, all these steps
should be done as quickly as possible. However, if the net-
work is unstable (e.g., there is a flapping link), generating
routing updates and recomputing routing table frequently
will increase bandwidth and computation overhead as well
as harm routing stability. At the same time, shortest path
first (SPF) computation time increases with the size of the
network; FIB update time depends on the number of pre-
fixes. To achieve fast convergence, both the network size
and the number of prefixes need to be limited, leading to
poor scalability.

There are mechanisms to improve link-state routing sta-
bility and scalability. Dynamic timers improve routing sta-
bility by limiting the rate of update generation and SPF
computation. However, these timers are increased expo-
nentially each time, potentially increasing convergence time
significantly when the network is unstable. Therefore, short
initial timers have been suggested [11]. Area was introduced
to improve routing scalability [22]. However, it leads to
sub-optimal paths between areas and increases the complex-
ity of configuration. Although inter-area routing can utilize

1
Supporting large number of prefixes is particularly important in

NDN since the number of name prefixes will be orders of magni-
tude larger than the number of IP prefixes in today’s Internet.

distance-vector or path-vector routing algorithms that may
scale better, they converge much slower.

In summary, it is hard to achieve fast convergence, stabil-
ity and scalability simultaneously in a routing protocol. If
failures can be handled without global routing convergence,
the requirement on fast convergence can be relaxed, making
it possible to improve routing stability and scalability.

3.2 Routing in NDN
In NDN, the forwarding plane is the actual control plane

since the forwarding strategy module makes forwarding de-
cisions on its own. This fundamental change prompts us
to rethink the role of routing in NDN. The first question is
whether NDN still needs routing protocols. Conventionally,
routing protocols are responsible for disseminating topol-
ogy and policy information, computing routes and handling
short-term network changes. For NDN to work without
routing, routers need to be able to do the following things
efficiently: 1) retrieve Data when the network is stable; 2)
handle link failures; and 3) handle link recovery. Can NDN
achieve these solely with the forwarding plane?

Another question that arises is if NDN does need routing
protocols, how will they be different from today’s existing
routing protocols? With the intelligent and adaptive for-
warding plane, can some of the routing plane’s functionality
be offloaded to the forwarding plane, and which? In addi-
tion, how will the design and operation of routing protocols
benefit from this shift of functionality? In the next section
we try to give answers to these questions.

4. ROUTING AND FORWARDING COOR-

DINATION
In this section, we seek answers to the questions raised

in 3.2. Previous research [31] shows that NDN routers are
able to handle link failures effectively without routing. In
this section we focus on whether NDN routers can retrieve
Data and react to link recovery efficiently without routing.
We show that NDN does need routing protocols to help boot-
strap the forwarding process and handle link recovery. In
addition, we specify how the routing plane coordinates with
the forwarding plane, and present a simple method to im-
prove routing stability and scalability in NDN.

4.1 Interface Ranking
The forwarding plane design presented in [31] assumes in-

terfaces are ranked by routing preference. Can NDN routers
retrieve Data efficiently without routing to rank the list of
available interfaces? The answer is negative. In the ex-
treme case, we can implement a forwarding strategy that
floods every Interest to all available interfaces. This way
we can always retrieve Data quickly through the best paths.
However, it will also incur significantly high overhead. We
can also implement forwarding strategies that randomly ex-
plore the interfaces or try them one-by-one in a round-robin
fashion. Given enough time, routers should be able to find
working paths since all possible paths will be explored. One
big issue with this method is that path exploration may take
extremely long time as shown in Section 5.3.

Consequently, NDN routers need good interface ranking
to help bootstrap the forwarding process. The responsibil-
ity of providing interface ranking lies in the routing pro-
tocols. Existing routing algorithms such as link-state or
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Pseudocode 1 ProbingDue Algorithm

1: function ProbingDue(FibEntry, Intf)
2: if Intf 6= FibEntry.RoutingPreferredIntf then
3: if FibEntry.LastProbingTime + M ≤ Now() or
4: FibEntry.PacketsSinceLastProbing ≥ N then

5: Return True
6: end if

7: end if

8: Return False
9: end function

distance/path-vector routing can be used to rank the in-
terfaces2. The details are explained as follows.

4.1.1 Link-State Routing

Link-state routing protocols store the entire network topol-
ogy in the link-state database (LSDB), making it possible
to compute optimal interface ranking. Suppose a node N

has n interfaces I1 .. In. For Data provided by node M ,
we rank these interfaces using C

M
N,k, which is the cost of the

best path from N to M through interface Ik. One simple
method to compute CN,k for all destinations through Ik is
to remove all interfaces except Ik from N ’s LSDB, and run
Dijkstra’s algorithm to compute the shortest paths. This
may not be the best method since it will end up calling Di-
jkstra’s algorithm once for every interface. It is just used
to illustrate how interface ranking can be done in link-state
routing. Optimization of the algorithm is possible but out
of the scope of this paper.

4.1.2 Distance/Path-Vector Routing

In distance-vector or path-vector routing, routers announce
cost of the complete routing path towards each destination
to their neighbors. When router N receives a routing an-
nouncement for Data provided by M from interface Ik, it
simply adds the link cost of Ik to the received path cost to
obtain its path cost C

M
N,k. The interfaces are then ranked

by the path costs to M through them.
Note that a router may not receive routing announcement

from all interfaces, since these routing protocols often incor-
porate split-horizon route announcement to prevent routing
loops. If router N learns a route towards M through inter-
face Ik, it will not advertise its route to M over Ik. Inter-
faces that do not receive routing announcement are assigned
infinite cost to ensure they stay at the end of the ranked in-
terface list. They will only be used as the last resort if all
higher-ranked interfaces fail to retrieve Data.

These interfaces are useful in many situations. For ex-
ample, in BGP if a provider P uses a customer C as the
next hop, it will not make routing announcement to C. If
C’s best path fails, it will not have an alternative path until
routing converges, in which case P will announce its alterna-
tive path to C. RBGP [14] is proposed to address this issue
by allowing P to announce its alternative path to C even
without failures. NDN, on the other hand, is able to achieve
the same effect without changing the routing protocol.

4.2 Probing

2
The case of BGP is more complex because it also takes routing

policy into consideration. How to accommodate routing policy in
interface ranking is part of our future work.

Pseudocode 2 Probing Algorithm

1: function Probe(Interest, FibEntry, PitEntry)
2: interface ← FibEntry.RoutingPreferredIntf
3: if interface 6∈ PitEntry.Outgoing and

4: interface 6∈ PitEntry.Incoming then

5: if interface.Available then

6: Interest.Nonce ← GenerateNonce()
7: Transmit(interface, Interest)
8: Add interface to PitEntry.Outgoing
9: FibEntry.LastProbingTime ← Now()
10: FibEntry.PacketsSinceLastProbing ← 0
11: end if

12: end if

13: end function

It has been shown that NDN routers can handle link fail-
ures locally at the forwarding plane [31]. In this subsec-
tion we answer the question of whether the same applies to
link recovery. Routers can detect link failures quickly by
observing Interest-Data exchanges or Interest NACK. How-
ever, there is no explicit signal for link recovery from the
forwarding plane. Again let’s take Figure 1 as an exam-
ple. After interface B-D recovers from a failure, interface
A-B becomes the best interface for A to retrieve data from
D. However, A will continue using interface A-C because
the forwarding strategy prefers Green interfaces over Yel-
low ones. In this case, A needs to probe interface A-B by
sending a copy of an Interest to it. If the probing Interest
successfully brings Data back, interface A-B will be marked
Green and be used to forward subsequent Interests to D.

There is a research question of when to perform prob-
ing. An Interest copy is used for probing so that regular
Data retrieval will not be affected if probing is unsuccessful.
However, this causes extra Interest and Data in the net-
work. There is a trade-off between how fast a link recovery
is detected and the amount of overhead caused by probing.
In CCNx [2], a prototype implementation of NDN, routers
probe alternative interfaces periodically in order to detect
better paths. This enables routers to detect link recovery at
the forwarding plane. Fast recovery detection is achievable
through aggressive probing. However, it will incur signifi-
cant overhead.

In fact, routing is able to help with the dilemma. If there
is a routing protocol, it will be able to detect link recovery
and converge to it by ranking the new best interface (Yellow)
higher than the currently used one (Green). Thus we can
take advantage of routing by only probing a Yellow interface
if its ranking is higher than the Green interface(s). This way
we can keep the probing overhead low, and switch back to
the optimal paths as soon as routing converges. Routing
convergence time is not a concern because the alternative
paths found by the forwarding plane are of good quality [31].
Note that probing is also useful in failure handling if the
alternative paths found by the forwarding strategy are not
the optimal ones.

We propose a probing algorithm as presented in Pseu-
docode 1 and 2. After forwarding each Interest, the strat-
egy module calls ProbingDue to check whether probing is
needed. Two thresholds are introduced to further limit the
probing overhead. For each FIB entry, M is the minimum
time interval, and N is the minimum number of packets for-
warded between two consecutive probings. The algorithm
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Table 1: Topologies Used in the Simulations.

Topology
Before Processing After Processing
Node # Link # Node # Link #

Abilene 12 30 11 28
AS1239-PoP 52 168 32 128
AS701-PoP 83 438 47 366

AS1239-Router 284 1882 N/A N/A

returns true only if at least M time has elapsed or at least N
packets have been forwarded since the last probing. The set-
ting of M and N depends on the traffic load and the probing
overhead network operators are willing tolerate. The prob-
ing algorithm (Pseudocode 2) sends a copy of the Interest to
the routing preferred interface using a different nonce. The
nonce is changed so that routers will not drop the probing
Interest after seeing the original Interest.

4.3 Routing Stability and Scalability
Link-state routing protocols exhibit poor stability and

scalability in IP due to the fast routing convergence require-
ment. However, there is a simple method to address these is-
sues in NDN. Since NDN routers can handle network failures
at the forwarding plane, short-lived failures can be masked
from the routing protocols. Research shows that the du-
ration of network failures follows a long-tailed distribution,
and over 50% of failures last less than one minute ([20, 28]).
Therefore, the number of routing events can be significantly
reduced if routing protocols do not need to react to the short-
lived failures. As a result, the bandwidth and CPU cycles
consumed by routing updates can be reduced, and there will
be less routing fluctuation. In addition, since there is no fast
routing convergence requirement, larger networks and more
name prefixes become affordable. In summary, both routing
stability and scalability can be significantly improved.

For link-state routing, we can implement the idea by in-
creasing the HELLO and DEAD interval. For example, if
we set the DEAD interval to be one minute, over 50% of the
link failures will be ignored by the routing protocol. Alter-
natively, we can increase the suppression timer for routing
update generation and SPF computation to achieve the same
effect. Although this idea looks simple, it can be applied to
any existing IP routing protocol to improve its stability and
scalability. We will evaluate the effectiveness of this method
in the next section.

5. EVALUATION
In this section we use extensive simulations to show that

NDN’s packet forwarding performance under network fail-
ures is hardly affected by routing convergence time; by mask-
ing short-lived failures from routing protocols, one can ef-
fectively reduce routing overhead while maintaining high
packet delivery performance in NDN networks.

5.1 Simulation Setup
Unless otherwise specified, we run experiments in the Qual-

Net simulator [4] which provides complete implementations
of OSPF and RIP routing protocols. We implement ba-
sic NDN operations and the forwarding strategy presented
in [31] in the simulator. We also make necessary changes to
the routing protocols as described in Section 4.1.

We use the Abilene topology [1] and selected Rocketfuel
topologies [26] in the experiments. A summary of the topolo-
gies is presented in Table 1. We process the first three
topologies to remove all single-homed nodes, because if the
link of a single-homed node fails, the node will be discon-
nected from the network and thus cannot provide any in-
sightful result. For OSPF, we use propagation delay as
the cost of the links. Unless otherwise specified, we report
results from the AS1239-PoP topology. Results for other
topologies are similar and lead to the same conclusions. The
AS1239-Router topology is only used to show the improve-
ment of routing scalability 3.

We inject random link failures into the topologies. A
shifted Pareto distribution is used to generate time-to-failure
and time-to-recover values for each link independently. We
use 120 seconds as the mean-time-to-recover, and 1000 sec-
onds as the mean-time-to-fail; the scale parameter of the
Pareto distribution is set to be 208 so that 50% of the fail-
ures last less than one minute [18, 20]. When a link fails,
both directions of the link stop working. With this model,
multiple network events (failures and recovery) can happen
concurrently.

5.2 Failure Handling
In this set of experiments, we compare the packet deliv-

ery performance of NDN and IP in failure scenarios under
different settings. We also evaluate the forwarding overhead
of NDN when a prefix becomes unreachable due to failures.

5.2.1 Impact of Routing Convergence Time

In this experiment, we run OSPF as the routing protocol
and study the impact of HELLO interval on packet deliv-
ery performance. We inject random link failures into the
network as described in Section 5.1. In order to measure
packet delivery performance in NDN and IP, we run simple
applications among all pairs of nodes in the network. For
NDN, each node announces a distinct name prefix and pro-
vides content under this prefix. Each node also acts as a
consumer requesting data from all other nodes. A consumer
sends one Interest towards each name prefix every second. If
Data is not received, a consumer will retransmit the Interest
every second up to twice. Different consumers request differ-
ent pieces of Data from the same name prefix so that they
do not affect each other. Caching is also disabled so that
we can focus on routing and forwarding behaviors4. For IP,
each node acts as both client and server. Each client sends
one UDP request to each server every second5. The server
responds with UDP packet carrying the content. Similar
to NDN consumers, these clients also retransmit requests if
replies are not received. The sizes of the UDP packets are
the same as those in NDN.

Figure 2 and 3 present the packet delivery rate for each
node pair in IP and NDN under different HELLO interval
settings. Figure 2 shows that HELLO interval has a huge
impact on the packet delivery performance in IP. The shorter
HELLO interval, the faster packet delivery can be resumed.

3We do not run packet-level simulations on the topology due
to performance limitations of the simulator.
4
If consumers request the same content and caching is enabled,

NDN would perform even better.
5
The packet rate is much lower than real Internet traffic due to

performance limitation of the simulator. In fact, the IP packet
delivery performance will be worse if the packet rate is higher.
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under different routing protocols.

The median packet delivery rate of IP is 99%, 91% and 72%
when the HELLO interval is 1S, 10S and 60S respectively.
Figure 2 also shows that NDN with 60S HELLO interval
even works slightly better than IP with 1S HELLO interval.

Figure 3 shows the impact of HELLO interval on the
packet delivery rate of NDN. When the HELLO interval
increases from 1S to 10S, the performance degradation is
negligible. When the HELLO interval increases from 10S to
60S, the packet delivery rate decreases slightly. This is be-
cause only two consumer retransmissions are allowed. The
packet delivery performance can be further improved by al-
lowing more consumer retransmissions. Overall, the HELLO
interval has little impact on the packet delivery performance
in NDN.

We also evaluate the packet delivery performance under
different routing protocols. Figure 4 shows the CDF of
packet loss rate of NDN and IP when OSPF and RIP are
used. Although RIP is generally considered to have poor
routing convergence properties, it performs quite well with
NDN. NDN with RIP performs much better than IP with
OSPF or RIP. The performance difference between OSPF
and RIP in NDN is due to the difference in interface rank-
ing. Recall that RIP may not provide cost for all interfaces,
thus OSPF is able to provide better interface ranking.

5.2.2 Comparison with IPFRR

In the previous section we evaluate the packet deliver per-
formance of plain IP, which relies on routing to handle net-
work failures. However, IP networks may adopt solutions
that handle network failures without routing convergence,
e.g., IPFRR. In this experiment, we compare NDN against
Loop-Free Alternate (LFA) [8], the only commercially avail-
able IPFRR solution. We implement LFA in a custom simu-
lator, and repeat the link failure experiment in [31] without
routing convergence. Only two consumer retransmissions
are allowed for NDN. In each run of the experiment, we as-
sociate each link with a probability of failure, and randomly
generate link failures. We run the experiments 1000 times
for each link failure probability.

Figure 5(a) shows the average reachability of NDN and
LFA with 95% confidence interval under different failure
probability. We only consider the situations where the source
and destination are not physically disconnected by the fail-
ures. The figure shows that NDN is always able to recover

from much more failure scenarios than LFA. Figure 5(b)
shows the CDF of stretch of alternative paths found by NDN
and LFA. The 98-percentile of path stretch for NDN and
LFA is 1.06 and 1.13 respectively. In conclusion, NDN is
able to cover more failure scenarios and find better alterna-
tive paths than LFA.

5.2.3 Prefix Unreachable

Previous experiments show that NDN performs well in
handling link failures. When a node fails, however, the name
prefix served by the node may become unreachable. In such
cases, path exploration may lead to extra Interests all over
the network. In this experiment we evaluate NDN’s explo-
ration overhead when a name prefix becomes unreachable.
In each run of the experiment we fail one node and let all
other nodes request content from this node before routing
convergence6. Both NDN and IP applications will retrans-
mit the same request twice. For each flow, we count the
number of hops that each packet traverses in both NDN
and IP, and compute the hop count ratio of NDN over IP.
We run the experiment for every node failure scenario and
present the CDF of the ratio in Figure 6.

In IP, retransmitted requests will be sent to the same
paths, whereas in NDN, retransmitted Interests may trigger
path exploration, leading to large overhead. Surprisingly,
NDN incurs less overhead than IP in 26% of the cases. This
is because retransmitted Interests do not always trigger path
exploration in NDN. If a node has already explored all its
interfaces, a further retransmission will only get a NACK
back to the application without being further forwarded. In
contrast, IP routers will always forward the packets before
routing convergence. The ratio is smaller than 5 in 93% of
the cases. Only in some rare cases does NDN cause exces-
sively high exploration overhead.

The exploration overhead becomes significant when popu-
lar content becomes unreachable, as many consumers will be
requesting the content and their Interests will trigger many
attempts by routers to find working paths. But on the other
hand, popular content is usually hosted and served by mul-
tiple servers placed at different locations. In addition, pop-
ular content is more likely to be cached by routers. Thus its

6
After routing converges, routers will learn about the failure and

stop forwarding the requests.
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Figure 5: Comparison between NDN and IPFRR.
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chance of becoming unreachable is slim. The overall impact
in large scale networks needs further investigation.

5.3 Forwarding without Routing
In this experiment we show how NDN forwarding performs

without routing. Since routers have no idea how to rank
the interfaces without input from routing, we implement a
forwarding strategy that prefers Green interfaces over Yellow
ones, and randomly picks a Yellow interface if no Green
interface exists. All interfaces are initialized to be Yellow.
If Data is brought back from an interface, the interface will
be marked Green and used to forward subsequent Interests.

In each experiment run, we pick one node as the con-
sumer and another as the content provider. Assuming the
consumer keeps retransmitting Interests until Data is re-
ceived, we measure how long it takes to receive the data.
We enumerate all combinations of consumers and providers
and draw the CDF in Figure 7. In 89% of the cases, the
consumer retrieves Data within one second. However, it can
take up to 40 seconds to find a working path in some rare
cases. The situation can get worse as the network becomes
larger. In contrast, Data retrieval always follows the best
paths when routing protocol can provide interface ranking.
Therefore, although NDN has a powerful forwarding plane
that is able to handle link failures on its own with only lo-
cal information, the interface ranking provided by a routing
protocol can make the local search more effective.

5.4 Routing and Forwarding Coordination
In this set of experiments we evaluate how NDN’s routing

and forwarding plane benefit from each other.

5.4.1 Probing Overhead

With the help of routing protocols, routers only need to
perform probing when a better link is presented by routing.
We evaluate probing overhead in this experiment. In each
run of the experiment, we fail one link and run applications
to let routers find working paths. Then we bring the link
back up again, and run applications after routing conver-
gence to measure the number of hops that probing Interests
and Data traverse. Interest NACKs are counted as prob-
ing Interests. Applications are only run between node pairs
whose traffic is affected by the failure. We run the exper-
iment on all link failure scenarios and report the CDF in
Figure 8. In 36% of the cases, probing Interests and Data
only traverse 2 hops; they traverse no more than 6 hops in
94% of the cases. Probing Interests traverse more hops than
Data in some rare cases, because a probing Interest does
not necessarily bring Data back, and some of them may
loop back to previously visited nodes and trigger NACKs.
This experiment shows that by taking advantage of routing,
probing only incurs very small overhead.

5.4.2 Routing Overhead

In this experiment, we evaluate the routing overhead of
OSPF under different HELLO and DEAD interval settings.
Specifically, we measure the number of HELLO messages,
link-state (LS) updates and SPF computations for each node.
HELLO and LS update messages constitute the majority of
routing messages triggered by failures and recovery. We set
the HELLO interval to be 1S, 10S and 60S; the DEAD in-
terval is always four times the HELLO interval. Random
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Figure 9: Routing overhead under different HELLO intervals in AS1239 PoP-level topology.
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Figure 10: Routing overhead under different HELLO intervals in AS1239 router-level topology.

link failures are injected into the network as described in
Section 5.1, and each experiment is run for 3000 seconds.
Only LS updates and SPF computations triggered by fail-
ures and recovery are counted7. The numbers obtained in
this experiment are the same for both NDN and IP.

Figure 9(a) shows the number of HELLO messages sent by
each node under different HELLO interval in AS1239-PoP
topology. As the HELLO interval increases from 1 second
to 60 seconds, the number of HELLO messages sent by each
node is decreased by 98% as one would expect. Figure 9(b)
and 9(c) present the number of triggered LS updates and
SPF computations for each node. As the HELLO intervals
increase, less failure events will be detected by OSPF. No
routing update will be generated and propagated for the
undetected failures, and thus no SPF computation will be
performed. If we increase the HELLO interval from 1 second
to 60 seconds, the number of LS updates is decreased by 52%
to 80%, and the number of SPF computations is decreased
by 77% to 82%. Therefore, we can effectively reduce the
overhead caused by HELLO messages, LS updates and SPF
computation by increasing the HELLO interval.

We run the same experiments in AS1239 router-level topol-
ogy to illustrate how the method works in large ISP net-
works. The CDF of number of triggered LS updates and
SPF computations are presented in Figure 10. The median
numbers of LS updates and SPF computations are decreased
by 87% and 90% when HELLO interval increases from 1 sec-

7
Notice that OSPF also floods refresh link-state announcements

periodically even in the absence of network event. These refresh
updates are not counted since they are not affected by routing
convergence behaviors.

ond to 60 seconds. In conclusion, routing overhead can be
significantly reduced by masking short-lived failures from
the routing protocol. Since less LS updates are generated
and propagated and less SPF computations are performed,
routing becomes more stable and scalable.

6. DISCUSSION
Routing is a necessary subsystem for any large scale net-

work. Like IP, NDN itself does not dictate what kinds of
routing algorithms or protocols to use. However one can take
advantage of NDN’s adaptive forwarding plane to improve
the stability and scalability of existing routing protocols, as
well as enable routing protocols that are deemed difficult to
adopt in IP networks.

Traditional Routing Protocols: With adaptive forwarding,
routing in NDN only assumes a supporting role. It pro-
vides a reasonable starting point for forwarding which can
then effectively explore different choices. The job of routing
becomes more of disseminating topology and policy infor-
mation than distributed computation of best paths. This
new division of labor between routing and forwarding makes
routing protocols simpler and more scalable. Traditional
routing protocols such as OSPF, RIP, and BGP can benefit
greatly from NDN’s adaptive forwarding plane. They can be
tuned for synchronizing among routers long-term topology
and policy information without handling short-term churns.

Centralized Routing: Routing protocols have been designed
to operate in a distributed manner to avoid single point of
failure. With the increasing complexity in network man-
agement, however, Software-Defined Networking (SDN) has
emerged to enable centralized management and control of

34



networks, including logically centralized routing scheme. It
is much easier to change the routing configurations on a
central controller than on all participating routers, and to
implement sophisticated traffic engineering schemes at the
controller than on individual routers. Routing overhead can
also be greatly reduced, since routing updates only need to
be sent to the controller instead of being flooded to the en-
tire network, and only the controller needs to perform SPF
computations. However, one of the biggest concerns about
centralized routing is the potentially prolonged convergence
delay, which includes failure detection at local router, report
to the controller, route recompilation at the controller, and
dissemination of new routes to individual routers. NDN’s
adaptive forwarding removes the demands on convergence
delay, making centralized routing feasible.

Coordinate-based Routing: In coordinate-based routing,
instead of disseminate the network topology to routers, the
coordinates of nodes are disseminated. The main character-
istics of the network topology are embedded in the coordi-
nates. Routers do greedy routing based on coordinates, i.e.,
forward packets to the neighbor whose distance (computed
using coordinates) to the destination is the shortest among
all neighbors. One example of such routing scheme is hyper-
bolic routing [23]. The advantages of this routing scheme
include smaller routing tables (i.e., only need to know the
destination’s coordinates and neighbor routers’ coordinates)
and minimal routing updates (i.e., link failures and recovery
do not affect a node’s coordinates). However, in IP networks,
this routing scheme is not guaranteed to be able to deliver
packets. It is possible that the forwarding process runs into
a local minimal, where all neighbors are farther to the des-
tination than the current router. Path stretch may also get
large. NDN’s adaptive forwarding can fix these problems
and make this routing scheme a possibility.

7. RELATED WORK
A massive amount of research has been conducted on how

to gracefully accommodate routing changes with minimum
impact on packet delivery in IP networks. One category of
solutions rely on routing protocols to adapt to the changes.
Francois et al. show that sub-second link-state routing con-
vergence in large intra-domain networks is achievable by tun-
ing various timers [11]. But this method incurs extra routing
overhead and may also cause routing instability.

Fast reroute (FRR) mechanisms handle link failures by
pre-computing alternative paths. MPLS FRR mechanisms
provide backup paths in MPLS-enabled networks to protect
specific links from failures [3]. Similarly, IPFRRmechanisms
(e.g., [8]) provide temporary alternative paths before routing
convergence in pure IP networks. However, it is hard for the
FRR mechanisms to cover all possible failure scenarios; nor
can they handle multiple link failures well.

Another category of solutions handle network failures via
multipath forwarding. Path splicing [21] is an end-to-end
multipath solution that provides link recovery controlled by
end hosts. Each router provides multiple routing tables and
let end hosts specify which one to use at each router. Path
splicing may take a long time to find alternative paths, and
sometimes may not be able to find them even if they ex-
ist [31]. MRC [16] provides multiple routing configurations
to handle network failures. Different from path splicing,
MRC lets routers switch configurations when failures are

detected. However, it may not handle multiple concurrent
failures well due to the limited path choices.

There are also solutions that carry routing or forwarding
information in the packet headers. Failure carrying packets
(FCP) [17] puts failure information into the packet headers,
and let routers recompute the routing tables on-the-fly upon
receipt of FCP. However, the method increases computation
overhead, and the sizes of FCP headers may become arbi-
trarily large. Liu et al. propose Data-Driven Connectivity
(DDC) [19] to ensure forwarding connectivity at the data
plane. DDC organizes the network as a destination-oriented
directed acyclic graph (DAG) to avoid loops, and uses two
bits in the packet header to notify link reversal. DDC has
its own control plane algorithm, therefore cannot make use
of existing routing protocols.

NDN keeps more states and does more processing at the
forwarding plane than IP. However, these forwarding states
also bring many benefits, such as native support of syn-
chronous and asynchronous multicast, loop-free multipath
data retrieval, efficient recovery from packet loss, flow bal-
ance and congestion control, which makes the forwarding
plane more robust and efficient. The purpose of this paper
is to assess how routing protocols can benefit from such a
forwarding plane assuming it’s already in place. There are
a number of other work with promising results on how to
build such an NDN forwarding plane that can operate at
very fast speed [33, 25, 30]. On the other hand, the man-
agement and stability of the forwarding state on an Internet
scale still need further improvement as argued in [29].

A considerable amount of research has been conducted
on routing and forwarding in the context of NDN and ICN
in general. Hoque et al. proposed NLSR [12], a link-state
NDN routing protocol that runs on top of NDN. It is the
first distributed routing protocol for NDN. INFORM [10]
is a dynamic Interest forwarding mechanism based on Q-
routing. It is able to discover cached Data copies in the
network that are not announced through routing protocols.
Tortelli et al. proposed COBRA [27], a bloom-filter based
intra-domain routing algorithm for NDN. It is simple and
efficient as no routing message is required between NDN
nodes. Saino et al. applied cache-aware hash routing tech-
niques to ICN and showed that inter-domain traffic can be
reduced significantly with hash routing [24]. Carzaniga et al.
investigated multi-tree routing in ICN [9]. Their proposed
routing scheme supports both content delivery and event
notification.

Routing scalability is also a critical issue for NDN to op-
erate at Internet scale. Kutscher et al. discussed the routing
scalability issue for Information Centric Networking (ICN)
in general [15]. Afanasyev et al. [5] investigated the rout-
ing scalability issue specifically for NDN and proposed a
solution based on map-n-encap. αRoute [6] is a novel name-
based routing scheme for ICN. It utilizes distributed hash
table to achieve scalable routing table size.

8. CONCLUSION
In this paper we study the role of routing in NDN. NDN’s

adaptive forwarding plane leads to a new division of labor
between routing and forwarding planes. While the latter
can detect and recover from link failures quickly indepen-
dent from the former, the former helps bootstrap adaptive
forwarding and handle link recovery. We specify how NDN
routing coordinates with forwarding through interface rank-
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ing and probing mechanisms. Our analysis and simulations
show that NDN routing protocols can benefit from the for-
warding plane due to the relaxed requirement on timely
detection of failures and convergence delay. Consequently
NDN routing stability and scalability can be greatly im-
proved. Moreover, the adaptive forwarding plane also en-
ables new routing schemes that may not work well in IP to
be used in an NDN network.
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