
 Matryoshka: Design of NDN Multiplayer Online Game
Zhehao Wang

REMAP, University of California,
Los Angeles

102 East Melnitz Hall
Los Angeles, CA 90095
zhehao.mail@gmail.com

Zening Qu
REMAP, University of California,

Los Angeles
102 East Melnitz Hall

Los Angeles, CA 90095
quzening@gmail.com

Jeff Burke
REMAP, University of California,

Los Angeles
102 East Melnitz Hall

Los Angeles, CA 90095
jburke@remap.ucla.edu

ABSTRACT
Massive multiplayer online games (MOG) have become
increasingly popular over the past decade. Peer-to-peer
structures were explored for commercial online games.
However, maintaining security and availability while
scaling users has driven most multiplayer online games
towards a client-server or client-superpeer architecture.

Client-server multiplayer games face certain problems: a
small number of points of failure and traffic centralizing at
several servers. Users of popular games complain about the
decrease in quality of service, largely caused by these two
factors. In order to tackle the problems of traditional client-
server online games, this demo presents Matryoshka, a pure
peer-to-peer multiplayer online game using the named data
networking[1] (NDN) future internet architecture.

NDN has several major strengths over IP; among them are
natural multicast support, content-based security and
mobility support. By utilizing the strength of multicast and
content caching, we believe that a pure peer-to-peer MOG
design in NDN can avoid challenges and limitations found
in IP.

Synchronization in a serverless distributed environment is a
key problem for pure peer-to-peer structure. Namespace
synchronization in just such a situation has been studied for
other serverless NDN applications like chat and file
sharing. The ChronoSync[2] model is proposed for both
use cases. Other cases like vehicular network also study
synchronization in a physical environment.

The challenges faced by an online game are different,
which we explore in this project. In this case, the
environment is a virtual world. Each player has an area of
interest, and it only needs to know things in this virtual
area instead of everything happening in the game, and this
we define as ‘locality in the game world’. In addition,

players whose areas of interest intersect with each other
should reach consistent conclusions about things in the
intersected area, which introduces the synchronization
problem.

NDN’s content caching and natural multicast support
feature may facilitate the distribution of game
synchronization data. We utilize these features by statically
and recursively partitioning the whole virtual environment
into octants, thus providing a shared namespace for every
peer running the game. Then, all the peers that care about
the same region can share the data brought by
synchronization interests towards the same nodes in the
octree. Figure 1 presents the octree partition of the game
world.

Figure 1 Octree partition of the game world

Then, we apply a two-step synchronization to deal with the
two questions which each peer addresses the network:
“which players are in my vicinity” (discovery) and “what
are those players doing” (update). Below we explain this
mechanism and present the namespace design.

For the first question, peers who care about the same octant
synchronize their name dataset belonging to the octant. To
do this, discovery interests containing the octant indices
and a digest of the octant’s set of object names are
expressed periodically to all peers in a “broadcast”
namespace. Peers receiving the discovery interest respond
with their own set of object names, if they have different
digests for the octant.

The namespace for discovery is given in Figure 2. The top-
level game name component separates the game into
several sub-worlds, and only players in the same sub-world
need to discover each other. Below the sub-world are

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.
ICN’14, September 24–26, 2014, Paris, France.
Copyright © 2014 ACM 978-1-4503-3206-4/14/09…$15.00.
http://dx.doi.org/10.1145/2660129.2660139

209

octant indices, which indicate the octant’s absolute location
in the game world. For each interest, we append a digest
component, which contains the hash of the set of object
name strings in that octant. Every peer should have the
same hash for octants belonging to their intersection, when
steady state is reached.

Figure 2. Broadcast discovery namespace

Using the object names returned in response to the
discovery interest, update interests are expressed by each
peer on an ongoing basis for the virtual location of the
players and several non-player characters (NPC) that
remain in their area of interest. The requesting peer decides
whether the resulting objects should be recorded and
rendered in the local game instance.

Figure 3 demonstrates the update namespace. Each
physical peer running the game is represented by a globally
unique process name. In each process, a variety of
objects—e.g., player and NPCs as well as other elements of
the game—are hosted. For each object, interests are
expressed for its position and actions using the namespace
as shown. Position and action names follow NDN
versioning conventions, enabling interest selectors to be
used to ensure the latest version is received by the
requesting peer.

Figure 3. Position and action update namespace

Our approach also explores techniques for progressive
discovery, an optimization for leveraging the usage of
larger octants, as well as dynamic adjustment of the area of
interest for a player.

Representing a player’s spherical areas of interest with only
leaf octants can cause the amount of discovery interests to
be large, thus increasing synchronization traffic.
Progressive discovery aims to allow peers to issue interest
packets corresponding to larger octants, so that we can
approximate spherical areas of interest with fewer interests.
In this case, a peer may receive synchronization interests
for large octants, about which it may have incomplete
knowledge. Our approach balances the impact of
unanswered interests vs. incomplete responses by having
answering peers wait to reply with a delay proportional to
the completeness of their knowledge of the requested
octant. Further, the requesting peer adjusts the area of
interest based on response performance. For example,
when the latency in discovery interests getting answered is
large (suggesting few peers with knowledge), or the
number of objects in a player’s area of interest exceeds a
preconfigured threshold (resulting in a lot of traffic), the
game application automatically shrinks the area of interest.

The demo application Matryoshka, a game environment
implementing the design outlined above, was built using
Unity3D game engine, and ndn-dot-net, a C# adaptation of
NDN Common Client Library. The demo will show the
game code running on a small number of peers, and with a
visualization of the network traffic going on in the two
namespaces as players navigate the game world on each
peer.

For the demo, player characters and NPCs are instantiated
by each peer, and each peer can navigate around the
common world using their player character. Player and
NPC discovery, and position update under several
preferences and scenarios will be demonstrated.
Challenging scenarios to handle with static octree
partitioning, such as having players that are close to the
border between two sub-regions of the highest subdivision
hierarchy, will be shown in addition to easier to handle
situations.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Distributed Application

Keywords
Massive multiplayer online game; named data networking;
synchronization

REFERENCES
[1] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F.

Plass, N. H. Briggs, R. L. Braynard. 2009. Networking
Named Content. CoNEXT 2009, Rome, Dec. 2009.
DOI=http://doi.acm.org/10.1145/1658939.1658941.

[2] Z. Zhu, A. Afanasyev. 2013. Let's ChronoSync:
Decentralized dataset state synchronization in Named
Data Networking. ICNP 2013, Oct. 2013.
DOI=http://dx.doi.org/10.1109/ICNP.2013.6733578.

210

