
NaNET: Socket API and Protocol Stack for
Process-to-Content Network Communication

Massimo Gallo, Lin Gu, Diego Perino, Matteo Varvello
Bell Labs, Alcatel-Lucent

first.last@alcatel-lucent.com

ABSTRACT
Inter-process communication (IPC) refers to the set of meth-
ods which enable data exchange among processes. When two
processes are remote (connected via a network), IPC is re-
alized through the socket and the networking protocol stack
implemented at end-hosts. Today, most computer networks
rely on the Internet NETtworking socket domains (INET)
and the Internet Protocol (IP) suite.

Information-centric networking (ICN) is a novel network-
ing paradigm centered around named data rather than named
hosts. ICN shifts the communication principle from process-
to-process towards process-to-content (PCC) by mean of a
novel name-based protocol suite. We propose Named NET-
working, a new socket domain and protocol stack that realize
PCC à la NDN [1] while remaining compatible with current
protocols and standards. Finally we implement NaNET in
the Unix operating system as a set of kernel modules.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Designs]: Network
communications; C.2.2 [Network Protocols]: Protocol ar-
chitecture

General Terms
Design, Implementation.

Keywords
NDN, API, stack, protocols.

1. PCC AND NaNET
We call NaNET socket domain and protocol stack that

enables PCC à la NDN. NaNET has two main design goals:
backward compatibility, and ease of integration with existing
operating systems. Accordingly, we rethink current API and
protocol stack to support PCC as shown in Figure 1.

To realize an incremental shift from IPC to PCC, our ra-
tionale is to extend the Unix implementation of the BSD

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full ci-
tation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).
ICN’14, September 24–26, 2014, Paris, France.
ACM 978-1-4503-3206-4/14/09.
http://dx.doi.org/10.1145/2660164.

Figure 1: Comparison of TCP/IP and NaNET API
and protocol stack.

sockets with a novel socket domain, and to deploy NDN as
an overlay over existing technologies. Differently from [5],
we propose a protocol stack composed of two layers, trans-
port and network, which sits between socket API and an un-
derlying technology that provides connectivity between two
NDN nodes. NaNET supports Ethernet and IP to provide
connectivity between two NDN nodes.

Similarly to [5], we identify two key processes involved
in the process-to-content communication model (PCC) used
by NDN: the publisher and the consumer. The publisher
process makes content publicly and permanently available
to the network by opening one or more sockets that simply
wait for incoming requests. The consumer process requests
content, based on the end-user interest. Such request targets
the desired content (that can be cached in the middle of the
network) instead of its publisher process.

In the following we briefly describe NaNET stack and con-
super/publisher API.

1.1 Socket Addressing Scheme
NaNET uses the hierarchical naming scheme proposed by

NDN to address content. To avoid conversion between appli-
cation data unit (ADU) and transmission unit, we follow the
application layer framing design principle by Clark et. al [4].
Accordingly, an ADU corresponds to a content segment and
defines the granularity for which the application can support
out-of-order packets and recovery from packet losses. The
publisher process is in charge of defining the proper ADU
size based on application constraints.

185



Consumer Operation System Call

Open the socket socket(domain,type,protocol)

Associates a content name or prefix to open a NaNET socket. bind(fd,*addr,addrlen)

Allows to verify if the desired content exists, and to retrieve its meta-data connect(fd,*addr,addrlen)

Set/Get the socket options. e.g., receiver timeout, transmission rate, etc... setsockopt(fd,level,optname,*optval,optlen)
getsockopt(fd,level, optname,*optval,*optlen)

Start process for named data retrieval. The major difference between these
system calls lies in the fact that recvfrom() and recvmsg() can specify the
name of the content to be received, while recv() and read() do not.

recv(fd,*buf,len,flags)
read(fd,*buf,len)
recvfrom(fd,*buf,buflen,flags,*addr,*addrlen)
recvmsg(fd,*msg,flags)

Close the socket close(fd)

Table 1: Consumer operations.

Publisher Operation System Call

Open the socket socket(domain,type,protocol)

Associates a content name or prefix to open a NaNET socket. bind(fd,*addr,addrlen)

Set/Get the socket options. e.g., receiver timeout, transmission rate, etc... setsockopt(fd,level,optname,*optval,optlen)
getsockopt(fd,level, optname,*optval,*optlen)

Inform underlying network layer that this process can serve all content items
whose names fall within a content prefix, triggering forwarding table update.

listen(fd,backlog)

Instruct a socket to wait for incoming Interests. Once an Interest is received,
it returns the packet to the publisher process that is responsible to handle it.

accept(fd,*addr,addrlen)

Send data back to the requester spedifying the data name. sendto(fd,*buf,len,flags,*addr,addrlen)
sendmsg(fd,*msg,flags)

Close the socket close(fd)

Table 2: Publisher operations.

1.2 Socket API
NaNET is designed to be easily integrated with the cur-

rent Unix implementation of the BSD socket. Indeed NaNET
API mimics current socket’s API, though with different func-
tionalities and implementations.

Similarly to [6], we make the NDN communication proto-
col available through the socket’s API by introducing new
NaNET address and protocol families, AF NANET and
PF NANET.

Available Consumer/Publisher system calls and a brief
description of their meaning are listed in Tab.1,2.

1.3 Transport Layer
Transport layer has different functionalities at the con-

sumer and producer process.
The consumer’s transport layer is responsible for transfer

reliability, flow/congestion control, data encapsulation and
decapsulation, data multiplexing and demultiplexing. We
identify three transport protocols at the consumer:

DATAGRAM: It allows the consumer to directly request
an ADU without the need of either flow or congestion con-
trol. DATAGRAM is the is unreliable and the consumer
process is responsible of managing retransmissions if needed.
STREAM: It allows the consumer to retrieve a sequence
of bytes using a congestion control mechanism like the ones
proposed in [2, 3]. STREAM is reliable but packet losses
recovery can be disabled.
CBR: It allows the consumer to request a“constant bit rate”
for the delivery of a byte range. As STREAM, CBR is reli-
able by default but packet losses recovery can be disabled.

At the publisher only one transport protocol is available,
PUB, which is is responsible for data encapsulation and
decapsulation, and multiplexing and demultiplexing. Pub-
lisher’s process simply listens for incoming requests to which
it replies with the requested data, if available.

Transport layer functionalities described above naturally
arise when moving from IPC to PCC. NDN also introduces
additional functionalities dictated by security as signature
generation (producer) and verification (consumer) are needed.

1.4 Network Layer
As for the IP network layer, packet forwarding is the main

operation the NDN network layer is responsible of. How-
ever, packets are forwarded based on content names rather
than IP addresses. When shifting from IP address to con-
tent names, several functionalities naturally arise, such as
caching and multi-path. It follows that the network layer
should implement additional operations to support such func-
tionalities. Differently from IP, data fragmentation and re-
assembly are delegated to underlying layers (possibly an ad-
ditional messaging layer) which provides connectivity be-
tween two NDN nodes.

2. REFERENCES
[1] Named data networking. http://named-data.net/.

[2] G. Carofiglio, M. Gallo, L. Muscariello, and
L. Papalini. Multipath congestion control in
content-centric networks. In Proc. of IEEE INFOCOM
NOMEN workshop, 2013.

[3] G. Carofiglio, M. Gallo, L. Muscariello, M. Papalini,
and S. Wang. Optimal multipath congestion control
and request forwarding in information-centric networks.
In Proc. of ICNP, 2013.

[4] D. D. Clark and D. L. Tennenhouse. Architectural
considerations for a new generation of protocols. In
Proc. of ACM SIGCOMM, 1990.

[5] I. Moiseenko and L. Zhang Anand. Consumer-producer
api for named data networking. NDN Technical Report,
2014.

[6] E. Nordstrom, D. Shue, P. Gopalan, R. Kiefer,
M. Arye, S. Ko, J. Rexford, and M. J. Freedman.
Serval: An end-host stack for service-centric
networking. In Proc. of USENIX NSDI, 2012.

186




