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ABSTRACT
This paper presents a high performance synchronization pro-
tocol for named data networking (NDN). The protocol, called
iSync, uses a two-level invertible Bloom filter (IBF) struc-
ture to support efficient data reconciliation. Multiple dif-
ferences can be found by subtracting a remote IBF from a
local IBF, and therefore, from a single round of data ex-
change. We evaluated iSync’s performance by comparing it
to the default data synchronization protocol of CCNx. Ex-
periments show that iSync is significantly faster for different
network sizes and topologies, and it requires less overhead
for synchronizing various file sizes.

Categories and Subject Descriptors
C.2.2 [computer-communication networks]: Network
Protocols—Applications

Keywords
Named data network; high performance; data synchroniza-
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1. INTRODUCTION
Data synchronization of multiple nodes is a fundamen-

tal operation in many Internet applications, such as cloud
storage, group communication, and routing protocols. In
named data networking (NDN) [1], keeping namespaces syn-
chronized has recently emerged as a basic service required
by many NDN applications, from Dropbox-style file sharing
to supporting mobile and ad-hoc vehicular communication.
NDN also uses a core synchronization protocol to support a
key-based trust model which requires public key exchange.

The goal of a synchronization protocol is to keep a dataset
(or a collection) up-to-date among distributed participants.
In other words, a synchronization protocol must replicate
a dataset’s content among participating hosts. In NDN, a
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content item is represented by a namespace, so a synchro-
nized NDN collection consists of the content names – a list
of namespaces.

Data synchronization consists of three basic tasks: 1) un-
derstanding whether a set is up-to-date or out-of-date, 2)
finding set differences, and 3) retrieving missing items.

This paper describes iSync, a high performance and scal-
able data synchronization protocol based on IBFs. iSync
uses a two-level IBF structure to support efficient data rec-
onciliation. The first level identifies collections which are
out-of-date; the second level discovers the IDs of all the items
that exist in a remote collection, but are missing in the local
one. This feature allows the difference reconciliation process
to efficiently skip collections that have no updates.

2. PROTOCOL DESIGN
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Figure 1: Data Synchronization Model.

As shown in Fig.1, iSync consists of two components: a
repository and a sync agent. The repository offers an in-
terface for CCNx entities (i.e., applications) to insert files
and publish sync collections. The iSync protocol operates
between any two nodes that publish the same collection. In
the NDN architecture, a collection is defined by a names-
pace. All the content items to be synchronized under a
published collection must be named using the collection’s
namespace in their prefix. Upon a content insertion, iSync
automatically adds the new content to the local collections
whose namespace matches the new item prefix.

The sync agent indexes the inserted files’ names and up-
dates a digest that reflects the current contents of each sync
collection. It periodically broadcasts local digests, while re-
ceiving remote ones. By comparing local with remote di-
gests, the sync agent can identify whether the collections
(local and remote) are synchronized. Synchronization starts
when a remote collection digest does not match the local
collection digest. The set difference of a local and a remote
node is found by repeatedly requesting, receiving, and sub-
tracting remote IBF tables from local and global IBF tables.
Multiple differences can be found from each subtraction, and
therefore, from a single round of data exchange.
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Figure 2: Hierarchical Data Structure.

Fig. 2 shows the hierarchical IBF design. The protocol
utilizes a two-level IBF design, Digest sync IBF and col-
lection sync IBFs, to perform the tasks mentioned above.
While level one records the status of the entire repository,
level two logs file insertions or deletions of each sync collec-
tion separately. An update changes a second level IBF by
hashing the content name into the corresponding collection
sync IBF. This hashing causes a change to the collection di-
gest, and therefore invokes an update in the first level IBF,
including the repository digest.

The original design of the IBF handles only fixed-length
item names and does not support content lookup very well
[2]. To address these limitations, iSync performs two tasks:
mapping variable-length file names into fixed-length IDs,
and recording what items have been inserted. The former is
done by using a hash-indexed table to support bidirectional
mapping between file names and IDs. During the entire syn-
chronization process, file names are replaced by fixed-length
file IDs. The latter utilizes a counting Bloom filter to sup-
port file insertions, deletions, and queries.

The iSync protocol utilizes IBFs to hold the set of name
IDs for each sync collection. While it is very efficient to com-
pute differences between two IBFs by subtracting them and
decoding the resulting IBF, there is no guarantee that all the
differences can be decoded. For a fixed-size IBF, the more
updates it holds, the less likely it can be perfectly decoded.
To ensure the decoding of all the differences, iSync imple-
ments a difference size control mechanism. Hosts that have
declared the same sync collections periodically confirm the
consistency of their data sets by exchanging their repository
digests. This periodic operation guarantees bounded delay
of file shares and limits the potential number of differences
between the hosts.
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Figure 3: Local and Global IBFs for one Sync Col-
lection.

For each collection, two types of IBFs are used: global
and local. A change in a local collection is indexed into the
current local IBF. When the number of differences exceeds
a defined maximum, iSync creates a new local IBF to store
future changes. A global IBF is the local IBF on the time of
a sync cycle and is regarded as a public version of the col-
lection data. To find all changes made in a sync cycle, iSync
subtracts a remote global IBF from the host’s global IBF.

If the subtraction fails to obtain the complete set difference,
iSync uses the local IBFs between the two latest global IBFs
to decode smaller set differences. The combination of those
IBF types makes differences between two IBFs traceable.
An application can tune the periodic sync time and the IBF
size to support its specific requirements.

3. EVALUATION
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Figure 4: Traffic Overhead for Various File Sizes.

We synchronized files of different sizes (from 128 KB to
64 MB) and measured the traffic overhead by capturing the
network traffic. Fig. 4 shows the number of packets trans-
mitted by CCNx Sync [3] and iSync for different file sizes.
In terms of the number of packets, iSync is about 18 and 48
times more efficient than CCNx Sync while sharing files of
128 KB and 64 MB respectively.
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Figure 5: Average Synchronization Time of iSync
and CCNx Sync.

We evaluated and compared the performance of the iSync
and CCNx Sync protocols in multiple network topologies
with a range of nodes scaling from 2 to 32. As shown in Fig.
5, iSync is significantly faster in both chain and full mesh
topologies for a range of network sizes.

4. CONCLUSION
This paper presents a high performance synchronization

protocol which utilizes the IBF to synchronize published col-
lections between nodes. The protocol uses a two-level IBF
design and can reconcile a number of differences in a single
comparison. We found that on average, iSync is about 66
times faster than CCNx on a range of network sizes, while
it uses 18 to 48 times fewer packets.
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