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ABSTRACT 
ICN (Information Centric Networking) has received much 
attention due to its built-in functionalities such as caching and 
mobility-support. One of the important research challenges is to 
reduce the power consumed by ICN networks because ICN’s 
packet forwarding and packet-level caching are power-hungry. As 
the first step to achieve power-efficient ICN networks, this paper 
develops a power consumption model of a multicore software 
ICN router while taking into account the power consumed by 
power-hungry computation. This paper makes the following three 
contributions: First, the model is one of the first realistic models 
which consider ICN packet forwarding and packet-level caching. 
Second, the model is represented as a concise set of equations 
with just a few parameters. Third, we apply the model to estimate 
power consumed by simple networks.  

Categories and Subject Descriptors  
C.2.1 [Computer-Communication Networks]: Network 
Architecture and Design 

General Terms 
Measurement, Performance, Design 

Keywords 
ICN (Information Centric Networking), NDN (Named Data 
Networking), Green Network, Power Consumption Model, 
Multicore Software Router 

1. INTRODUCTION 
ICN (Information Centric Networking) [1] has received much 
attention since it inherently provides attractive functionalities such 
as mobility support, caching and name-based routing. However, 
many issues should be resolved so that ICN networks are widely 
deployed. Among them, time-consuming packet forwarding and 
packet-level caching raise a couple of issues: forwarding 
performance [2] and power consumption. 

Since name-based packet forwarding and packet-level 
caching are time-consuming, high performance ICN router 
implementations are a hot research topic and many studies focus 
on efficient prefix-matching and caching algorithms [3-6]. On the 
contrary, the study in [7] designs a protocol such that burdens of 
name-based longest prefix match (LPM) are mitigated by 
cooperating ICN routers.  

Power reduction is a hot research topic as well, but many 
studies focus on traffic reduction due to caching, which may 
reduce power as a byproduct. A well-studied issue is optimizing 
cache amount allocations in a network [8, 9] assuming that 
memory devices for caching consume much power at the idle time. 
For example, Perino et al. assume that the DRAM (Dynamic 
Random Access Memory) devices used for CSs (Content Stores) 
consume 0.023 W/MBs at the idle time [3]. However, the power 
consumed by them is being reduced by voltage reduction and 
manufacturing technology improvement. Voglesng predicts that a 
decrease in power by bit consumed by DDR (Double-Data-Rate 
SDRAM) is 1.2 per generation of DDR [10]. The current 
generation is DDR3, and DDR4 and DDR5 are planned to be 
develop by 2018. A white paper of some vendor shows that power 
by the least power-efficient DDR3 device is 0.0000625 W/MBs 
[11]. Besides it is expected that non-volatile memory devices such 
as flash memory devices would be used for CSs in the future due 
to their improvement of reliability and access speed. 

This power reduction tendency implies that reducing power 
consumed by time-consuming packet forwarding becomes 
important compared with power consumed by memory devices. 
Thus, in this paper, we address a tradeoff relation between power 
consumed by packet forwarding/packet level caching and traffic 
reduction due to caching in terms of power consumed by an ICN 
network. As the first step, we model how an ICN software router, 
especially its packet forwarding, consumes power. The targets of 
this paper are multicore software ICN routers because such 
routers used in access networks consume more power than routers 
in backbone networks [12, 13].  

Our objectives are two-fold: The first objective is to 
understand how ICN packet forwarding and packet level caching 
consume power. This helps us obtain insight on designing power-
efficient ICN routers and networks. The second one is to show the 
necessity of power consumption models of ICN routers so that 
researchers and engineers develop power-efficient techniques 
using these models. 
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The main contributions of this paper are three-fold: First, this is 
one of the first power consumption models which focus on power 
consumed by packet forwarding and packet-level caching. This 
allows us to identify insight on power-efficient parallel ICN 
packet processing at multicore software routers. Second, the 
model is represented as a concise set of equations with just a few 
parameters such as an interest packet rate and a cache hit rate so 
that the model is easily used in mathematical analysis and 
simulations for estimating power consumed by an ICN network. 
Third, we apply the model to estimate the power consumed by a 
small network. This validates the necessity of the proposed model 
by estimating the power consumed by ICN packet forwarding.  

The rest of paper is organized as follows: Section 2 summarizes 
the related work. Section 3 proposes the reference architecture. 
Sections 4 and 5 empirically model how a multicore software 
router based on NDNx [14, 15] consumes power. Section 4 
models the power consumed by the hardware platform and section 
5 focuses on power consumed by NDNx packet forwarding. 
Section 6 applies the model to estimate power consumed by a 
small network. Section 7 concludes the paper. 

2. RELATED WORK 
Since name-based packet forwarding and packet-level caching are 
time-consuming, high-performance ICN router implementations 
are a hot research topic. Perino et al. [3] firstly address this issue 
and predict future name-based packet forwarding performance. So 
et al. [4, 5] design a high-performance forwarding algorithm and 
implement it on a commercial router chassis. Focusing on caching, 
Rossini et al. [6] design a caching algorithm to achieve high 
performance content access on multi-terabyte caching devices. 
Whereas these studies focus on individual routers, Fukushima et 
al. design a protocol which avoids redundant longest prefix 
matching due to neighboring routers’ cooperation [7].  On the 
contrary, this paper focuses on power consumed by packet 
forwarding. 

Many studies focus on the caching functionality because 
traffic reduction would contribute to power reduction in networks.  
Lee et al. [12, 13] investigate how much power is reduced by 
reducing hop counts to get contents. In their simulations, they use 
a power consumption model which only considers power 
consumed by lower layer packet forwarding devices. Choi et al. 
[8] show that the power consumed by memory devices used for 
caching and for the forwarding processes are not negligible. Imai 
et al. [9] propose a method of deciding capacities of ICN routers’ 
memory devices so that the sum of power consumed by those is 
minimized. 

The power consumption models of these studies consist of 
the following two analysis techniques: The first technique is 
analyzing the power consumed by devices. Many power 
consumption models focus on the power consumed by memory 
devices because they are power-hungry even at the idle time. On 
the contrary, this paper focusses on power consumed by packet 
forwarding, taking into account the memory power reduction 
tendency [10, 11]. The second technique is analytically 
calculating cache hit rates of all routers in an ICN network [16-
18]. The cache hit rates are used to estimate the amount of packets 
forwarded by ICN routers and the power consumed by forwarding 
these packets. This paper also analytically calculates cache hit 
rates similarly to these studies.  

Bolla et al. [19] empirically develop a power consumption 
model of a COTS (Commercial Off-The Shelf) multicore software 
router. Although this study has been a motivation for us, it only 

focuses on IP routers and does not consider ICN packet 
forwarding. Whereas this study formulates power as a 7 
dimensional polynomial to model various power optimization 
techniques, this paper develops the model by avoiding effects 
from such optimizations.  

3. REFERENCE ARCHITECTURE 
3.1 Hardware Platform 
We choose multicore software routers as our target hardware 
platforms because we predict that they are going to be used in 
access networks in the near future. First, full-fledged ICN routers 
which have all ICN functionalities including caching one would 
not be used in backbone networks, but only in access ones. This is 
because caching in backbone networks is not as effective as that 
in access ones [20]. Second, it is natural that ICN functionalities 
are not implemented by interface cards, but by service cards like 
ISM (Internal Service Module) cards of some vendor’s routers. So 
et al. show that 20 Gbps throughput is feasible on such service 
cards on commercial routers [4] and the routers are a multicore 
software router which consists of a service card and multiple 
interface cards.  

 

 

Figure 1 (a) shows a reference multicore software router 
hardware platform. It consists of a service card and multiple ICs 
(Interface Cards) which are connected via a cross-bar switch. An 
ICN protocol is implemented as a program on the service card. 
Memory devices are used to store tables for name-prefix matching 
and packets themselves. What kinds of memory devices such as 
DRAM (DDR3) devices and SSD (Solid State Drive) devices are 
used is determined depending on requirements to the packet 
forwarding speed.  

The service card is a multicore CPU board with memory 
devices and its architecture is similar to a PC (Personal Computer) 
which is shown in Fig 1 (b). We consider that a main difference 
between a commercial multicore software router and a PC is how 
devices are connected. For example, they are connected via a 
cross-bar switch and a bus in a commercial router and a PC, 
respectively. Thus assuming that these two hardware platforms 
similarly consume power [4], in this paper, we model power 
consumed by a PC instead of a commercial multicore software 
router.  

Figure 1(b) shows a reference PC hardware platform. In this 
paper, we use the minimum configuration which consists of one 
CPU device with 4 CPU cores, one DDR3 memory device, a 
chassis and one NIC (Network Interface Card). The DDR3 
memory device is used to store both tables and packets. 
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Figure 1. Multicore Software Router and PC Router.

158



3.2 Software Architecture 
We choose NDN/CCN [15] as the ICN protocol because it is 

widely used and its source code NDNx/CCNx[14] is available. 
However, since the current NDNx source code is single-threaded, 
how to extend it to be multi-threaded is an important issue. The 
two requirements need be considered to do so. First, mutual 
exclusion among CPU cores should be avoided. Second, none of 
CPU cores should be lightly loaded so that the number of active 
CPU cores is minimized. The second requirement comes from the 
observation that a CPU core fully consumes power even if it is 
lightly loaded. See section 4.3. In the rest of this section, after 
describing the hardware platform, we roughly sketch the 
algorithm because the objective is to show its feasibility. 

3.2.1 Data Structures 
In order to satisfy the first requirement, we re-design the tables of 
NDNx which record information used for packet forwarding and 
packet-level caching. The tables include the NPHT (Name Prefix 
Hash Table) and CS (Content Store). Each entry of the tables is 
identified by the name of the content. When incoming NDNx 
packets are processed by CPU cores in parallel, at least, the 
tables’ entries of the same name should not be simultaneously 
accessed by multiple CPU cores. Thus we divide the tables to 
multiple groups of tables as shown in Fig. 2 so that each group of 
tables have entries of disjoint names with those of the other 
groups. 

An intuitive way of grouping is to assign different name 
spaces to individual groups of tables similarly to [4]. No CPU 
core can access any entry which is not assigned to it because each 
entry of any table is identified by the name of incoming packet. 
We divide the name space of NDNx to M independent name 
spaces by hashing a root prefix of name, i.e., the first component 
of a hierarchical human-readable name, to M hash values. (ܯ ൌ 4 
in Fig. 2) The names of the same hash value are assigned to the 
same group. Hashing root prefixes comes from the fact that 
entries of NPHT that have a parent-child relationship also have a 
link between them [2].  

  

 

3.2.2 Re-assignment Algorithm 
In order to satisfy the second requirement, a dispatcher of 
dispatching incoming NDNx packets to CPU cores is designed as 
follows. As shown in Fig. 2, the dispatcher which is assigned to 
some core, e.g., Core #0, in Fig. 2, receives an NDNx packet and 
dispatches it to the CPU core, e.g., Core #1 in Fig.2. The 

dispatcher assigns each group of the tables to one CPU core and 
re-assigns the groups depending on the loads of the corresponding 
CPU cores. For example, when some CPU cores are lightly loaded, 
it re-assigns some groups assigned to it to other active CPU cores, 
so that the CPU core becomes inactive. On the contrary, when 
some CPU core is heavily loaded, some of their groups of tables 
are re-assigned to other CPU cores.  

In order to do such re-assignments, we introduce a data 
structure (the CPU Table in Fig. 2) which manages pending 
incoming NDNx packets which are dispatched to individual 
groups, but are not processed. The dispatcher always monitor the 
numbers of pending packets and the loads of all CPU cores and 
re-assigns the groups so that that none of CPU cores is lightly 
loaded.  

We omit the details of the re-assignment procedure. We only 
address the following three issues to design the algorithm: The 
first issue is how other processes than NDNx packet forwarding is 
assigned to CPU cores. We assume that one CPU core, i.e., Core 
#0 in the figure, is dedicated to them. Such processes include 
those of the dispatcher, forwarding IP packets encapsulating 
NDNx packets and routing protocols.  

The second issue is the number of groups. Here, let M and N 
be the numbers of the groups and the CPU cores, respectively. M 
is any integer m such that ݉ ൒ ܰ െ 1 because one CPU core is 
dedicated to the dispatcher. We pick up N as m and thus M is N in 
the rest of the paper. We assume a simple re-assignment algorithm 
such that if the incoming packet rates to some CPU cores are 
heavy, some of the groups are re-assigned to in-active CPU cores. 
On the contrary, if the rates to some active CPU cores are light, 
the groups on it are re-assigned to active CPU cores. Since an 
active CPU core consumes the maximal power as described in 
section 4.3, the algorithm need not carefully re-assign groups of 
tables. The third issue is about caching hit rates when a CS is 
divided to smaller ones due to the above grouping and we address 
it in section 6.2. 

4. POWER CONSUMPTION MODEL 
We develop a power consumption model of multicore software 
NDNx router to satisfy the following requirements. The first 
requirement is that the model should reflect loads on a hardware 
platform. It means that the consumed power is a function of the 
loads. Such loads include a CPU core load, an access to a DRAM 
(DDR3) device and so forth. The second requirement is that the 
above loads on the hardware platform should be derived from 
loads of ICN packet forwarding.  Sections 4 and 5 address the first 
and second requirements, respectively. 

4.1 Formulation 

We formulate the power consumed by the PC platform of the 
minimum configuration shown in Fig.1 (b). The power 

௥ܲ௢௨௧௘௥ሺܿݏ݁ݎ݋,  ூ௉ሻ [W] is defined in equation (1) and it is݁ݐܽݎ
parameterized by the following two parameters: the number of 
active CPU cores, i.e., cores, and the IP packet forwarding rate, 
i.e., ݁ݐܽݎூ௉ [packet/s].  

௥ܲ௢௨௧௘௥ሺܿݏ݁ݎ݋, ூ௉ሻ݁ݐܽݎ ൌ ௖ܲ௣௨ሺܿݏ݁ݎ݋ሻ ൅ ௠ܲ௘௠ሺܾݏ݁ݐݕሻ 

                                  ௡ܲ௜௖ሺ ݁ݐܽݎூ௉ሻ ൅ ூܲ஽௅ா   ሾWሿ                 ሺ1ሻ 

 ௖ܲ௣௨ሺܿݏ݁ݎ݋ሻ [W]: The power consumed by the CPU device. It 
is the function of the number of active CPU cores ܿݏ݁ݎ݋. 
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CPU Table
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Packet
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Figure 2. Parallel Processing of NDNx Packets. 
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 ௠ܲ௘௠ሺܾݏ݁ݐݕሻ  [W]: The power consumed by accessing the 
DDR3 device. It is the function of the number of bytes which 
are accessed per second. 

 ௡ܲ௜௖ሺ ݁ݐܽݎூ௉ሻ ሾWሿ: The power consumed by the NIC. It is the 
function of the IP packet forwarding rate ݁ݐܽݎூ௉.  

 ூܲ஽௅ா ሾWሿ: The power consumed by the chassis when the router 
is idle. It includes the power of all devices.   

In this section, we empirically measure the above four terms 
in order to model them. The measurement conditions are as 
follows: The PC is a PC server with Xeon E3-1220 processor 
(3.10 GHz*4 cores CPU and DDR3 16 GB memory device). One 
Intel Ethernet Converged Network Adapter X540-T2 (10 GbE 
NIC) and a Western Digital 2 T bytes SATA 3.5 inch HDD (Hard 
Disk Drive) are used. The operating system is Ubuntu 13.10. We 
use the power meter and the current transformer developed by 
Omron (ZN-CTX21 and ZN-CTS51-200As). The power is 
measured in the unit of Joule/s, i.e., Watt. We set the clock 
frequency of the CPU device at 1.6 GHz in order to avoid effects 
from the CPU clock frequency adaptation functions which modern 
CPU devices have. Each measurement under the same condition is 
performed twenty times and its measurement duration is ten 
minute long.  

4.2 Power Consumed by Chassis 

We measure the power consumed by the PC under the condition 
that all CPU cores are inactive (idle) and that the NIC is 
connected to a LAN switch, but any frame is neither sent nor 
received. The average and distribution are 36.06 [W] and 3.69 ·
10ି଺ and thus we determine  ூܲ஽௅ா  to be 36.06 [W]. Besides we 
measure the average power of the NIC at the idle time ேܲூ஼ூ஽௅ா  
and its two-sided 95% confidence intervals are 13.42 and 13.90 
[W]. 

4.3 Power Consumed by CPU Cores 

The power consumed by the CPU device ௖ܲ௣௨ሺܿݏ݁ݎ݋ሻ  is 
determined by the number of active CPU cores ܿݏ݁ݎ݋ as shown 
by the equation (2). This subsection shows that the power 
consumed by the CPU device is digitized by the number of active 
CPU cores. 

௖ܲ௣௨ሺܿݏ݁ݎ݋ሻ ൌ ൞

5.98 ሾWሿ  ሺܿݏ݁ݎ݋ ൌ 1ሻ
8.20 ሾWሿ ሺܿݏ݁ݎ݋ ൌ 2ሻ

11.50 ሾWሿ ሺܿݏ݁ݎ݋ ൌ 3ሻ
14.90 ሾWሿ ሺܿݏ݁ݎ݋ ൌ 4ሻ

                         ሺ2ሻ 

First, to show that power consumed by active CPU cores is 
digitized by their number, we measure the power consumed by 
one CPU core at various loads. We run a simple program which 
repeatedly performs the sequence of computations:  arithmetic 
operations for 12.5 µs and, sleep for a fixed duration, arithmetic 
operations for 25.5 µs and sleep for a fixed duration. The CPU 
core is made inactive by using nanosleep command of Linux and 
the minimum sleeping duration is about 55 µs . This sequence 
emulates NDNx packet forwarding when a cache hit rate is 0, as 
described in Section 6.  The 12.5 µs and 25.5 µs correspond to the 
duration when the NDNx router forwards one Interest packet to an 
upstream router and that when it forwards one Data packet to a 
downstream router, respectively. Thus we can regard the rate of 
the repetitions [sequence/s] as the input Interest packet rate 
[packet/s]. 

Figure 3 shows the measured power at various converted 
input Interest packet rates [packet/s] and the power that one active 

CPU core consumes (the dotted line in Fig. 3). From the 
observation below, we conclude that an active CPU core 
consumes the maximum power. One CPU core consumes about 
90% of the maximum power of one CPU core even if the input 
Interest packet rate, i.e., 6756.76 [packet/s], is just about 25.7% of 
the maximum rate which one CPU core provides. Please see the 
measured power at the rate of 6756.76 [packet/s].  

 

 

Second, we measure the power consumed by 1, 2, 3 and 4 
CPU cores by running a program which calculates arithmetic 
operations. Figure 4 shows the measured power with a scattered 
graph. The averages for CPU cores are the constants in equation 
(2). 

 

4.4 Power Consumed by Memory Device 
We formulate the power consumed by accessing data in the DDR3 
device ௠ܲ௘௠ሺܾݏ݁ݐݕሻ  as a function of the number of accessed 
bytes per second ܾݏ݁ݐݕ [byte/s] as follows: 

௠ܲ௘௠ሺܾݏ݁ݐݕሻ ൌ ெܲாெூ஽௅ா ൅ ஻ܲ௒்ா ·  ሾWሿ ,          ሺ3ሻ    ݏ݁ݐݕܾ

where ெܲாெூ஽௅ா  is 1.10 [W] and ஻ܲ௒்ாis 0.44 · 10ିଽ [Joule/byte]. 
The objectives of this subsection are to validate that the power 
consumed by accessing the DDR3 device is proportional to the 
rate of accessing it [21] and to decide the constants ெܲாெூ஽௅ா  and  

஻ܲ௒்ா in equation (3). 

We run the program which repeatedly reads 8 byte data from 
the array allocated by the malloc function. We measure the 
following values at various sizes of the arrays:  32 MBs, 64 MBs, 
256 MBs and 512 MBs. 

 The power consumed by the PC hardware platform [W]: We 
derive the power consumed by accessing the DDR3 device by 
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subtracting the power consumed by one active CPU core (5.98 
W) from the measured power. 

 The average number of accessed bytes in the DDR device per 
second (by using the Intel® Performance Counter Monitor). 

Figure 5 shows the power consumed by the DDR3 device at 
various access rates [byte/s]. We decide the two constant 
 ெܲாெூ஽௅ா  and  ஻ܲ௒்ா  by using least squares approximation. We 
assume that the power consumed by reading and writing data is 
the same. 

 

 

4.5 Power Consumed by NIC 
We formulate the power consumed by the NIC is a function of the 
IP packet forwarding rate  as 

 ௡ܲ௜௖ሺ ݁ݐܽݎூ௉ሻ ൌ ௉ܲ஺஼௄ா் ·  ூ௉   ሾWሿ,                           ሺ4ሻ݁ݐܽݎ 

where ௉ܲ஺஼௄ா் is 3.04 · 10ି଺ [Joule/packet]. 

We measure the power consumed by the NIC at various rates 
in the following way: The three PCs are connected by 10 Gbps 
Ethernet links. One PC is used as an IP router and the other two 
are used as a client and server. The client sends UDP packets at 
various rates by running a simple program which switches 
between sending a UDP packet and sleeping. We measure the 
power consumed by the NIC by choosing 1500 bytes as the size of 
the IP packets. 

 

 

Figure 6 shows the power consumed by the NIC. The power 
is not exactly proportional to the forwarding rate; however, we 
assume that is proportional to the forwarding rate ݁ݐܽݎூ௉. This is 
because its two-sided 95% confidence intervals are just 2.51 and 
2.57 [W] and thus errors between the actual and estimated values 

would be negligible. We decide the constant ௉ܲ஺஼௄ா்  using least 
squares approximation. 

5. PACKET FORWARDING ANALYSIS 
This section addresses how the three parameters cores, bytes and 
 ூ௉ of the PC hardware platform’s model are defined. These݁ݐܽݎ
three parameters are defined as functions of the average input 
Interest packet rate ߣூ஼ே

ூே  [packet/s] and the average cache hit rate 

஼ܲௌ
௛௜௧ as shown in the equations (5) to (8). This enables equation 

(1) to be easily used in mathematical analysis and simulations. 
This is because most studies on caching techniques estimate cache 
hit rates of all routers under assumed input Interest packet rates to 
edge routers.  

ூ஼ேߣ൫ݏ݁ݎ݋ܿ
ூே , ஼ܲௌ

௛௜௧൯ ൌ ඃߣூ஼ே
ூே · ݈ܿ௜௖௡൫ ஼ܲௌ

௛௜௧൯ ⁄஼ைோாܮܥ ඇ ൅  1   ሺ5ሻ 

݈ܿ௜௖௡൫ ஼ܲௌ
௛௜௧൯ ൌ ෍ ௙ܥ

௙אிభ

൅ ஼ܲௌ
௛௜௧ ڄ ෍ ௙ܥ

௙אிమ

 

                           ൅൫1 െ ஼ܲௌ
௛௜௧൯ ڄ ෍ ௙ܥ

௙אிయ

   ሾcyclesሿ 

             ൌ 17718 ൅ ஼ܲௌ
௛௜௧ · 4917 ൅ ൫1 െ ஼ܲௌ

௛௜௧൯ · 31069    ሺ6ሻ 

ூ஼ேߣ൫ݏ݁ݐݕܾ
ூே , ஼ܲௌ

௛௜௧൯ ൌ ூ஼ேߣ
ூே · ௌூ௓ா݇݊ݑ݄ܥ · ܴ ሾbyte s⁄ ሿ        ሺ7ሻ 

ூ஼ேߣூ௉൫݁ݐܽݎ
ூே , ஼ܲௌ

௛௜௧൯ ൌ ூ஼ேߣ
ூே · ሺ2 െ 1 ஼ܲௌ

௛௜௧ሻ                            ሺ8ሻ 

The constant ܮܥ஼ைோா  is the maximum CPU clock cycles of 
one CPU core per second. In this paper, ܮܥ஼ைோா is 1.6 G [cycle/s]. 
The constant ܴ is 11.03 (See section 5.3) and ݇݊ݑ݄ܥௌூ௓ா  is the 
average chunk size [bytes]. The first term, i.e., ඃߣூ஼ே

ூே ·
݈ܿ௜௖௡൫ ஼ܲௌ

௛௜௧൯ ⁄஼ைோாܮܥ ඇ, of equation (5) is the number of cores for 
the NDNx packet forwarding engine and the second term, i.e. 1, 
represents the CPU core which carries out all procedures other  
than NDNx packet forwarding. This corresponds to the core Core 
#0 in Fig. 2. 

5.1 IP Packet Forwarding Rate 
This subsection describes how ݁ݐܽݎூ௉൫ߣூ஼ே

ூே , ஼ܲௌ
௛௜௧൯  is calculated 

assuming that Interest and Data packets are encapsulated by 
UDP/IP packets. First, we explain how Interest and Data packets 
are forwarded. When the input Interest packet rate and the cache 
hit rate are ߣூ஼ே

ூே  and ஼ܲௌ
௛௜௧, respectively, Interest and Data packets 

are received and sent per second in the following way:  

 ߣூ஼ே
ூே  Interest packets are received from downstream routers, 

 ஼ܲௌ
௛௜௧ Data packets are sent back to them 

 ߣூ஼ே
ூே · ሺ1 െ ஼ܲௌ

௛௜௧ሻ  Interest packets are sent (forwarded) to 
upstream routers 

 ߣூ஼ே
ூே · ሺ1 െ ஼ܲௌ

௛௜௧ሻ  Data packets are received from the 
upstream routers 

 ߣூ஼ே
ூே · ሺ1 െ ஼ܲௌ

௛௜௧ሻ  Data packets are sent back to the 
downstream routers 

Since each NDNx packet is encapsulated by an IP packet, 
ூ஼ேߣூ௉൫݁ݐܽݎ

ூே , ஼ܲௌ
௛௜௧൯is calculated as follows: ߣூ஼ே

ூே · ሺ2 െ 1 ஼ܲௌ
௛௜௧ሻ IP 

packets are sent and the same number of IP packets are received 
per second. It means that ߣூ஼ே

ூே · ሺ2 െ 1 ஼ܲௌ
௛௜௧ሻ  IP packets are 

forwarded. Thus ݁ݐܽݎூ௉൫ߣூ஼ே
ூே , ஼ܲௌ

௛௜௧൯  is ߣூ஼ே
ூே · ሺ2 െ 1 ஼ܲௌ

௛௜௧ሻ . We 
note that in this paper we assume that one IP packet encapsulates 
one NDNx packet. 

5.2 CPU Clock Cycles 
The number of active CPU cores ܿݏ݁ݎ݋൫ߣூ஼ே

ூே , ஼ܲௌ
௛௜௧൯ is estimated 

based on the number of CPU clock cycles which the packet 
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forwarding engine uses. It is obtained by ceiling the value which 
is obtained by dividing ߣூ஼ே

ூே · ݈ܿ௜௖௡൫ ஼ܲௌ
௛௜௧൯  by the CPU clock 

cycles of one CPU core per second. 

 ݈ܿ௜௖௡൫ ஼ܲௌ
௛௜௧൯[cycles] is the average number of CPU clock cycles 

to perform all functions (in the NDNx source code) which are 
executed after receiving one Interest packet when the cache hit 
rate is ஼ܲௌ

௛௜௧. Equation (6) describes how ݈ܿ௜௖௡൫ ஼ܲௌ
௛௜௧൯ is calculated. 

 ௙ in equation (6) is the average number of CPU clock cycles toܥ
execute a block f. We call functions which are run sequentially as 
a block and classify all the functions in the NDNx source code 
into the following three groups of blocks so that the average 
number of CPU clock cycles is calculated from a cache hit rate of 
the router: 

 The group of blocks F1 : The block is always run when an 
Interest packet is received.  

 The group of blocks F2: The block is run only when an Interest 
packet hits a Data packet contained in the CS.  

 The group of blocks F3: The block is run only when an Interest 
packet does not hit any Data packet contained in the CS.  

Thus the individual terms ∑ ிభא௙௙ܥ
, ∑ ிమא௙௙ܥ

 and ∑ ிయא௙௙ܥ
 

are the total CPU clock number consumed by executing all the 
blocks in the group for processing one pair of an Interest and the 
corresponding Data packets. Since an Interest packet corresponds 
one-to-one with a Data packet,  ∑ ிభא௙௙ܥ

൅ ஼ܲௌ
௛௜௧ ڄ ∑ ிమא௙௙ܥ

൅
൫1 െ ஼ܲௌ

௛௜௧൯ ڄ ∑ ிయא௙௙ܥ
 calculates the average CPU clock cycle 

number with the cache hit rate ஼ܲௌ
௛௜௧ when one Interest packet is 

received. In section 5.4, we classify all the functions into the three 
groups. In section 5.5, we empirically measure individual bocks’ 
CPU clock cycles. 

5.3 Access Rate to DDR3 Device in Bytes 
This subsection describes how ܾݏ݁ݐݕ൫ߣூ஼ே

ூே , ஼ܲௌ
௛௜௧൯, i.e., the average 

number of accessed bytes in the DDR3 per second, is derived. 
Since it is difficult to precisely calculate how many bytes in the 
DDR3 device the blocks access at run time, we estimate it in the 
following way: First, we empirically measure how many bytes in 
the DDR3 device are accessed by observing a communicating 
NDNx router. We derive the ratio of the number of accessed (read 
or written) bytes in the DDR3 to that of bytes of contents which is 
retrieved. R in the equation (7) is this ratio. For example, if R is 10, 
when a 1 GBs of content is retrieved, the NDNx router is assumed 
to access 10 GBs in the DDR device.  

Second, we assume that the above ratio is always the same 
for any NDNx packets. Here, since ߣூ஼ே

ூே · ௌூ௓ா݇݊ݑ݄ܥ  is the 
average byte number of retrieved contents, equation (7) estimates 
the number of accessed bytes in the DDR3 device per second. We 
measure the average number of accessed bytes in the DDR3 
device per second during the experiments in section 5.3. Each 
client retrieves between a 1 GBs and 4 GBs of contents from a 
server. We set the constant ܴ  as 11.03 in the equation (7) by 
averaging the measured values. 

5.4 NDNx Source Code Analysis 
In this subsection, we classify all the functions of the NDNx 
source code into the three groups of blocks and analyze packet 
flows among the blocks.  

The blocks of group F1 are the most darkly shaded in Fig. 7. 
For example, the block Duplication Check checks whether the 
nonce of the received Interest packet is the same as one of the 

previously received Interest packets or not. If this check is passed, 
the PIT (Pending Interest Table) is looked up to check the Interest 
packet is already stored in the PIT. If this check is true, the block 
Name Prefix HTE Lookup&Insert creates a NPHT entry and then 
the block CS Lookup checks whether the corresponding Data 
packet is stored at the CS or not. Otherwise, the blocks which are 
paled in Fig. 7, e.g., Insert HTE Lookup&Insert, FIB lookup and 
PIT Insert, are executed. Here, the probability of this check’s 
being true is negligible because the number of outstanding Interest 
packets of which the corresponding are sent back from the 
upstream route is nearly 0. Thus the model assumes that the 
former blocks are always executed and the latter blocks are never 
executed.  

The blocks of group F2, which are executed when the Interest 
packet is hit, are medium shaded in Fig. 7. Since the Interest 
packet is hit at the CS, the block Interest Consume finds other 
pending Interest packets in the PIT related to the name such as 
Interest packets which are designated the lengths of names and do 
not exactly match the names but satisfy requirements for matching, 
and then sends back the Data packets to all the requesting 
downstream routers. 

 

 

The blocks of group F3, which are executed when the Interest 
packet is not hit, are lightly shaded in Fig. 7. When the Interest 
packet does not hit any Data packets in the CS, it is forwarded to 
the upstream router. The three blocks are executed to forward 
such an Interest packet. Then the router receives the Data packet 
corresponding to the forwarded Interest packet, the router 
executes the two blocks to send back the Data packet after storing 
it at the CS.  

We note that the blocks do not include functions for 
processing XML-based packets and their parameters. As the 
authors in [2] show, NDNx packet formats are compliant with 
XML and processing XML-based packets are 6 to 7 times heavier 
than the other procedures. We ignore these because future NDNx 
implementations may change XML-based formats to binary 
formats so that such packet format processing overhead would be 
negligible. 

5.5 Clock Cycle Measurements 
We measure CPU clock cycles of each block as follows: We 
connect three PCs via a Gigabit Ethernet switch. One PC acts as 
an NDNx router and two PCs act as a client and a server, 
respectively. At each server PC, 10 contents are stored and each 
size is 30 MBs. Four virtual machines are run in a client PC. At 
each virtual machine, one consumer is run and it requests two of 
contents at the server PC. Since four virtual machines are running, 
the client PC sends 8 Interest packets in parallel so that the CPU 
load of the router is high. 
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The parameters at the NDNx layer are chosen as follows: 
The length of content name is 20 characters. The size of CS is 
400,000 chunks (about 16 GB) and the size of each content is 30 
MBs. 10 contents are stored at each server. These parameters are 
chosen so that some blocks do not consume extremely large 
power. For example, the number of components of the name is set 
to 1. This is because the current implementation of block, Name 
Prefix HTE Lookup&Insert is extremely time-consuming when 
the component number is large and because the procedures used 
for name prefix filtering might be deleted in the future.  

The NDNx software is run by adding RDTSC (Read Time-
Stamp Counter), which reads a time stamp counter, a register 
incremented by CPU clock cycles in order to measure how many 
clock cycles each block consumes. Table 1 shows the average 
CPU clock cycles of individual blocks. 

Table 1. The Numbers of Average CPU Clock Cycles 

Group Block f ݏ݈݁ܿݕܥ
F1 Duplication Check 2068 
F1 PIT Lookup 1029 
F1 Name Prefix HTE Lookup&Insert 4023 
F1 CS Lookup 10598 
F2 Interest Consume (Interest) 4917 
F3 Interest HTE Lookup&Insert 1684 
F3 FIB Lookup 807 
F3 PIT Insert 1232 
F3 CS Lookup&Insert 18176 

 

6. CASE STUDY 
This section addresses the following three issues in order to 
validate the power consumption model. The first issue is how 
cache hit rates of all routers are affected under the condition 
where the CS is divided to smaller CSs. The second issue is how 
our reassignment algorithm contributes to power reduction 
compared with the fixed dispatching such that groups of tables are 
assigned to the fixed CPU cores. The third issue is a good 
example of using our model. We discuss the issues after 
describing the scenarios used. 

6.1 Scenarios 
This section shows the conditions of estimations. 

 The network topology is a three-level complete binary-tree of 
NDNx routers. The repository of contents is stored at the server 
directly connected to the root router. 

 The number of contents G is 160,000. The size of contents is 10 
MBs based on a recent study by Zhou et al. which estimates 
that there are currently 5 · 10଼ YouTube videos of average size 
10 M bytes [22]. Each content is divided to chunks whose size 
is 1500 byte long.  

 The number of CPU cores N of all level routers is 4. The 
number of groups of the tables M is 4. The total size of CSs of 
each router is 16 G bytes and that of each CS is 4 G bytes. 

 The popularities of contents are defined in classes. Each class 
includes 4 contents. The popularities of classes is a Zipf 
distribution wherein ߙ ൌ 0.8 [23]. 

 One client is connected to the 1st level router. The rate at which 
each client sends Interest packets is chosen so that the 
maximum number of CPU cores of the 3rd level router is less 
than 4. The Interest packet rate is 32,810 [packet/s]. This 
corresponds to 0.394 Gbps content retrieval. 

6.2 Cache Hit Rate Calculation 
We calculate the cache hit rates of all routers in the complete-
binary tree topology based on the model which Che et al. [17] and 
Fricker et al. [18] propose. We assume that a content request 
process is an independent Poisson process with mean rate λ. We 
introduce classes to popularities of contents, so that contents of 
the same popularity distribution are handled by M independent 
caching algorithms based on LRU (Least Recently Used). Thus 
each class consists of M (=4) contents and their popularity is the 
same. The number of classes K is  ܯ/ܩ where ܩ is the number of 
all contents. The popularity of each class ݍ௞  is defined in the 
equation (9). 

௞ݍ   ൌ
ଵ ௞ഀ⁄

∑ ଵ
௡ഀൗ಼

೙సభ
                                                                        ሺ9ሻ 

The CS of C contents is divided into M equal-sized CSs and 
the size of each CS is ܥ௠ ൌ ܥ ⁄ܯ  contents. Note that the CS 
corresponds to the sum of divided CSs of the proposed router in 
Section 4. Here, we assume that caching algorithms are 
independently executed under the IRM for CSs and thus that 
content requests independently arrive at individual CSs. This 
means that any content in the same class exclusively arrives at the 
same CS. Here, the number of contents which arrive at each CS is 
defined as ܩ௠ ൌ ܩ ⁄ܯ ൌ ܭ . Thus, the mean rate of all content 
requests ߣ௠, the popularity of the contents at kth class ݍ௠,௞ and the 
mean rate of this content ߣ௠,௞ of the divided CS m are defined in 
equations (10) to (12). 

௠ߣ ൌ ߣ ⁄ܯ                ሺ10ሻ          ݍ௠,௞ ൌ
1 ݇ఈ⁄

∑ 1
݊ఈൗீ೘

௡ୀଵ

          ሺ11ሻ 

௠,௞ߣ ൌ ௠ߣ ·  ௠,௞                                                                    ሺ12ሻݍ

Since we assume the caching algorithms of individual CSs 
are independently executed, we can derive the cache hit rate of the 
content at the kth class ݌௠,௞ by equation (13) and ݐ௠,஼೘

  is 
obtained by solving equations (14). (See the details in [18].) 

௠,௞݌ ൌ 1 െ ݁ିఒ೘,ೖ· ௧೘,಴೘     ሺ13ሻ   ܥ௠ ൌ ෍ ௠,௞        ሺ14ሻ݌

ீ೘

௞ୀଵ

 

We can derive the expected value of cache hit rate of the 
divided CS  ݌௠ by equation (15) and finally derive the expected 
value of the CS  p  by equation (16). 

௠݌ ൌ ෍
௠,௞ߣ

௠ߣ

ீ೘

௞ୀଵ

݌       ௠,௞      ሺ15ሻ݌ ൌ ෍
௠ߣ

ߣ

ெ

௠ୀଵ

 ௠             ሺ16ሻ݌

We assume (i) that the forwarding process of the kth class 
content of each caching algorithm toward an upstream router is 
also an independent Poisson process with the mean rate Φ௠,௞ and 
(ii) that the arrival process of content requests on an upstream 
router is the superposition of forwarding processes from 
downstream routers.  Φ௠,௞ is obtained by solving equation (17). 

௠,௞ߔ ൌ ௠,௞・ሺ1ߣ െ  ௠,௞ሻ                                      ሺ17ሻ݌

From these two assumptions (i) and (ii), we can derive cache 
hit rates of the 2nd and 3rd level routers by recalculating based on 
equations (13) to (16). 

6.3 Power Reduction Due To Reassignment 
We compare the power consumed by routers both with and 
without our reassignment algorithm of groups of tables as follows. 
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We calculate the cache hit rates of the 1st , 2nd and 3rd routers 
based on section 6.2 and they are 0.188, 0.055, 0.043, respectively. 
We assume that CPU cores of all routers consume the maximum 
power when the reassignment algorithm is not used (without re-
assignment in Figures 8 and 9). Figure 8 and 9 show the power at 
the various Interest packet sending rates up to 32,810 [packet/s]. 

Figure 8 and 9 show the total power consumed by all routers 
and the power which is obtained by subtracting the power 
constantly consumed, i.e., the sum of all routers’ ூܲ஽௅ா . In other 
words, the latter power is the power proportional to loads. The 
reason why we show Fig. 9 is as follows. The loads of all routers 
are light due to the small network configuration. The power 
constantly consumed accounts for a large portion of the total 
tower. In other words, the power proportional to loads accounts 
for just a small portion. Thus the difference between the two, i.e., 
with re-assignment and without re-assignment in Fig.8 is small 
even if the power proportional to loads would account for a large 
portion in actual large-scale networks. 

   

 

 

x 

 

The observation from the figures is that the reassignment 
algorithm reduces power consumed by an NDNx network, 
especially at light loads. However, we note that estimations with 
the algorithm are the minimum values which would be obtained in 
ideal conditions. 

6.4 Power Reduction Due To Caching 
Caching reduces the number of forwarded NDNx packets as the 
prices for CPU clock cycles for packet level caching, i.e., those of 

CS Lookup and CS Lookup& Insert blocks in Table 1. Thus the 
following question is raised. Whether does caching actually 
reduce the power consumed by an NDNx network? Thus we try to 
answer this question by comparing the power consumed by three 
configurations of networks: all routers, only the 1st level routers 
and none of routers provide the cache functionality. The three 
configurations called as cnfg-all, cnfg-1st and cnfg-none, 
respectively. 

Table 2 show the power consumed in the three configurations. 
The second and third rows show the total power and the power 
proportional to loads. The difference in the row (b) somewhat 
remarkable compared with that in the row (a). The power of cnfg-
all is the largest among three configurations. At least, in this small 
network, the packet number reduction due to caching does not 
compensate for the prices for CPU clock cycles for packet level 
caching. 

This observation is somewhat contradictory to the intuition 
that caching would reduce power consumptions. What we want to 
say from the observation is not that caching is not effective to 
reduce power, but that the precise power consumption model 
estimating the power consumed by packet forwarding is inevitable 
both to estimate power consumed by an NDNx network and to 
analyze tradeoffs between the reduction of forwarded packets and 
the increase of power due to packet level caching. 

Table 2. Power Consumed by NDNx Network [W] 

 cnfg-all cnfg-1st cnfg-none 
(a)Total power 335.2 325.3 326.0 
(b)Power 
proportional to load 

82.9 73.0 73.7 

6.5 Lessons Learned 
The power consumption model which we develop and the 

case studies are pre-mature, but we obtain important lessons to 
achieve power-efficient ICN networks. 

 The power consumed by ICN packet forwarding and packet 
level caching accounts for a large portion of the power 
consumed by an ICN network. Although this may be partly 
because the current ICN routers’ designs are not mature, it is 
important to understand more precisely how ICN packet 
forwarding consumes power and to improve the forwarding 
algorithm. Our power consumption model focussing on packet 
forwarding would play an important role to do so. 

 The proposed algorithm of re-assigning loads, e.g., the groups 
of tables, among CPU cores is such an example of algorithm. 
The algorithm is designed so that the number of active CPU 
cores is minimized. Multicore software ICN routers should be 
designed to consider efficiency in both forwarding 
performances and power consumed by packet forwarding. 

 Caching itself does not reduce power due to the prices for CPU 
clock cycles for packet level caching in some environments. 
This shows that reducing the power is not trivial and it is an 
important research topic. 

 Switching-off devices when their load is light is useful to 
reduce power. The proposed re-assignment algorithm is such an 
example. Another promising candidate is to switch-off NICs 
because the power at the idle time is high. For example, the 
power of the NIC in this paper is between 13.42 and 13.90 W 
and it is about three times larger than that of one CPU core. 
This observation implies that caching would play an important 
role to achieve traffic engineering techniques for switching-off 
redundant links [24]. 
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 Although the model is hardware platform dependent, we 
consider that the models on the other hardware platforms are 
easily developed. First, our modelling technique is concise and 
it specifies the power as functions with a few parameters. 
Second, most assumptions on power consumptions are 
confirmed in section 4 and we believe that they would be true 
on other platforms. An example assumption is that power 
consumed by the DDR device is proportional to the access rate 
[byte/s]. 

 In addition, although the model focuses on a specific PC which 
is implemented in terms of current technology, we believe that 
the modelling method which the paper proposes is applicable to 
model multi-core software routers in the future due to the 
following reasons: First, the hardware platforms of multicore 
software routers and PCs of current technology are similar as 
described in section 3.1. Second, since most technologies of 
devices including memory devices are mature, it is expected 
that their performances and consumed energy are gradually 
improved.  

Finally, we note that the current model does not precisely 
estimate power consumed by longest-prefix matching when the 
number of entries in the NPHT is large. This modelling is 
necessary to model backbone routers and thus we are on the way 
to extend the model so as to provide such modeling. 

7. CONCLUSION 
This paper develops a power consumption model of a multicore 
software ICN router focusing on power consumed by packet 
forwarding and packet-level caching. We develop the model from 
a PC hardware platform and the NDNx/CCNx source code 
assuming that commercial multicore software routers and PC-
based routers similarly consume power. We obtain several lessons 
from developing the precise power consumption model. We 
believe that modeling power consumptions is as an important 
research topic in networking communities as in hardware/system 
communities wherein power consumption models of memory 
devices [10] and server systems [21] are developed. 
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