
Empirically Modeling How a Multicore Software ICN Router
and an ICN Network Consume Power

Toru Hasegawa
Osaka University

Yamada-oka, Suita-shi,
Osaka, Japan

t-hasegawa@ist.osaka-u.ac.jp

Junji Takemasa
Osaka University

Yamada-oka, Suita-shi,
Osaka, Japan

j-takemasa@ist.osaka-u.ac.jp

Yuto Nakai
Osaka University

Yamada-oka, Suita-shi,
Osaka, Japan

y-nakai@ist.osaka-u.ac.jp

Yuki Koizumi
Osaka University

Yamada-oka, Suita-shi,
Osaka, Japan

yuki@ist.osaka-u.ac.jp

Kaito Ohsugi
Osaka University

Yamada-oka, Suita-shi,
Osaka, Japan

k-ohsugi@ist.osaka-u.ac.jp

Ioannis Psaras
University College London

WC1E 7JE, Torrington Place,
London, UK

i.psaras@ucl.ac.uk

ABSTRACT
ICN (Information Centric Networking) has received much
attention due to its built-in functionalities such as caching and
mobility-support. One of the important research challenges is to
reduce the power consumed by ICN networks because ICN’s
packet forwarding and packet-level caching are power-hungry. As
the first step to achieve power-efficient ICN networks, this paper
develops a power consumption model of a multicore software
ICN router while taking into account the power consumed by
power-hungry computation. This paper makes the following three
contributions: First, the model is one of the first realistic models
which consider ICN packet forwarding and packet-level caching.
Second, the model is represented as a concise set of equations
with just a few parameters. Third, we apply the model to estimate
power consumed by simple networks.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design

General Terms
Measurement, Performance, Design

Keywords
ICN (Information Centric Networking), NDN (Named Data
Networking), Green Network, Power Consumption Model,
Multicore Software Router

1. INTRODUCTION
ICN (Information Centric Networking) [1] has received much
attention since it inherently provides attractive functionalities such
as mobility support, caching and name-based routing. However,
many issues should be resolved so that ICN networks are widely
deployed. Among them, time-consuming packet forwarding and
packet-level caching raise a couple of issues: forwarding
performance [2] and power consumption.

Since name-based packet forwarding and packet-level
caching are time-consuming, high performance ICN router
implementations are a hot research topic and many studies focus
on efficient prefix-matching and caching algorithms [3-6]. On the
contrary, the study in [7] designs a protocol such that burdens of
name-based longest prefix match (LPM) are mitigated by
cooperating ICN routers.

Power reduction is a hot research topic as well, but many
studies focus on traffic reduction due to caching, which may
reduce power as a byproduct. A well-studied issue is optimizing
cache amount allocations in a network [8, 9] assuming that
memory devices for caching consume much power at the idle time.
For example, Perino et al. assume that the DRAM (Dynamic
Random Access Memory) devices used for CSs (Content Stores)
consume 0.023 W/MBs at the idle time [3]. However, the power
consumed by them is being reduced by voltage reduction and
manufacturing technology improvement. Voglesng predicts that a
decrease in power by bit consumed by DDR (Double-Data-Rate
SDRAM) is 1.2 per generation of DDR [10]. The current
generation is DDR3, and DDR4 and DDR5 are planned to be
develop by 2018. A white paper of some vendor shows that power
by the least power-efficient DDR3 device is 0.0000625 W/MBs
[11]. Besides it is expected that non-volatile memory devices such
as flash memory devices would be used for CSs in the future due
to their improvement of reliability and access speed.

This power reduction tendency implies that reducing power
consumed by time-consuming packet forwarding becomes
important compared with power consumed by memory devices.
Thus, in this paper, we address a tradeoff relation between power
consumed by packet forwarding/packet level caching and traffic
reduction due to caching in terms of power consumed by an ICN
network. As the first step, we model how an ICN software router,
especially its packet forwarding, consumes power. The targets of
this paper are multicore software ICN routers because such
routers used in access networks consume more power than routers
in backbone networks [12, 13].

Our objectives are two-fold: The first objective is to
understand how ICN packet forwarding and packet level caching
consume power. This helps us obtain insight on designing power-
efficient ICN routers and networks. The second one is to show the
necessity of power consumption models of ICN routers so that
researchers and engineers develop power-efficient techniques
using these models.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICN’14, September 24–26, 2014, Paris, France.
Copyright © 2014 ACM 978-1-4503-3206-4/14/09…$15.00.
http://dx.doi.org/10.1145/2660129.2660142

157

The main contributions of this paper are three-fold: First, this is
one of the first power consumption models which focus on power
consumed by packet forwarding and packet-level caching. This
allows us to identify insight on power-efficient parallel ICN
packet processing at multicore software routers. Second, the
model is represented as a concise set of equations with just a few
parameters such as an interest packet rate and a cache hit rate so
that the model is easily used in mathematical analysis and
simulations for estimating power consumed by an ICN network.
Third, we apply the model to estimate the power consumed by a
small network. This validates the necessity of the proposed model
by estimating the power consumed by ICN packet forwarding.

The rest of paper is organized as follows: Section 2 summarizes
the related work. Section 3 proposes the reference architecture.
Sections 4 and 5 empirically model how a multicore software
router based on NDNx [14, 15] consumes power. Section 4
models the power consumed by the hardware platform and section
5 focuses on power consumed by NDNx packet forwarding.
Section 6 applies the model to estimate power consumed by a
small network. Section 7 concludes the paper.

2. RELATED WORK
Since name-based packet forwarding and packet-level caching are
time-consuming, high-performance ICN router implementations
are a hot research topic. Perino et al. [3] firstly address this issue
and predict future name-based packet forwarding performance. So
et al. [4, 5] design a high-performance forwarding algorithm and
implement it on a commercial router chassis. Focusing on caching,
Rossini et al. [6] design a caching algorithm to achieve high
performance content access on multi-terabyte caching devices.
Whereas these studies focus on individual routers, Fukushima et
al. design a protocol which avoids redundant longest prefix
matching due to neighboring routers’ cooperation [7]. On the
contrary, this paper focuses on power consumed by packet
forwarding.

Many studies focus on the caching functionality because
traffic reduction would contribute to power reduction in networks.
Lee et al. [12, 13] investigate how much power is reduced by
reducing hop counts to get contents. In their simulations, they use
a power consumption model which only considers power
consumed by lower layer packet forwarding devices. Choi et al.
[8] show that the power consumed by memory devices used for
caching and for the forwarding processes are not negligible. Imai
et al. [9] propose a method of deciding capacities of ICN routers’
memory devices so that the sum of power consumed by those is
minimized.

The power consumption models of these studies consist of
the following two analysis techniques: The first technique is
analyzing the power consumed by devices. Many power
consumption models focus on the power consumed by memory
devices because they are power-hungry even at the idle time. On
the contrary, this paper focusses on power consumed by packet
forwarding, taking into account the memory power reduction
tendency [10, 11]. The second technique is analytically
calculating cache hit rates of all routers in an ICN network [16-
18]. The cache hit rates are used to estimate the amount of packets
forwarded by ICN routers and the power consumed by forwarding
these packets. This paper also analytically calculates cache hit
rates similarly to these studies.

Bolla et al. [19] empirically develop a power consumption
model of a COTS (Commercial Off-The Shelf) multicore software
router. Although this study has been a motivation for us, it only

focuses on IP routers and does not consider ICN packet
forwarding. Whereas this study formulates power as a 7
dimensional polynomial to model various power optimization
techniques, this paper develops the model by avoiding effects
from such optimizations.

3. REFERENCE ARCHITECTURE
3.1 Hardware Platform
We choose multicore software routers as our target hardware
platforms because we predict that they are going to be used in
access networks in the near future. First, full-fledged ICN routers
which have all ICN functionalities including caching one would
not be used in backbone networks, but only in access ones. This is
because caching in backbone networks is not as effective as that
in access ones [20]. Second, it is natural that ICN functionalities
are not implemented by interface cards, but by service cards like
ISM (Internal Service Module) cards of some vendor’s routers. So
et al. show that 20 Gbps throughput is feasible on such service
cards on commercial routers [4] and the routers are a multicore
software router which consists of a service card and multiple
interface cards.

Figure 1 (a) shows a reference multicore software router
hardware platform. It consists of a service card and multiple ICs
(Interface Cards) which are connected via a cross-bar switch. An
ICN protocol is implemented as a program on the service card.
Memory devices are used to store tables for name-prefix matching
and packets themselves. What kinds of memory devices such as
DRAM (DDR3) devices and SSD (Solid State Drive) devices are
used is determined depending on requirements to the packet
forwarding speed.

The service card is a multicore CPU board with memory
devices and its architecture is similar to a PC (Personal Computer)
which is shown in Fig 1 (b). We consider that a main difference
between a commercial multicore software router and a PC is how
devices are connected. For example, they are connected via a
cross-bar switch and a bus in a commercial router and a PC,
respectively. Thus assuming that these two hardware platforms
similarly consume power [4], in this paper, we model power
consumed by a PC instead of a commercial multicore software
router.

Figure 1(b) shows a reference PC hardware platform. In this
paper, we use the minimum configuration which consists of one
CPU device with 4 CPU cores, one DDR3 memory device, a
chassis and one NIC (Network Interface Card). The DDR3
memory device is used to store both tables and packets.

Core

Core

CPU Board

DR
AM

NIC

Bus

Core

Core

Core

Core

Service Card Memory
(Packets)

Core

Core

IC

Chassis Chassis

IC IC IC

(a) Router Hardware (b)PC Hardware

Cross‐bar Switch

Memory
(Tables)

Figure 1. Multicore Software Router and PC Router.

158

3.2 Software Architecture
We choose NDN/CCN [15] as the ICN protocol because it is

widely used and its source code NDNx/CCNx[14] is available.
However, since the current NDNx source code is single-threaded,
how to extend it to be multi-threaded is an important issue. The
two requirements need be considered to do so. First, mutual
exclusion among CPU cores should be avoided. Second, none of
CPU cores should be lightly loaded so that the number of active
CPU cores is minimized. The second requirement comes from the
observation that a CPU core fully consumes power even if it is
lightly loaded. See section 4.3. In the rest of this section, after
describing the hardware platform, we roughly sketch the
algorithm because the objective is to show its feasibility.

3.2.1 Data Structures
In order to satisfy the first requirement, we re-design the tables of
NDNx which record information used for packet forwarding and
packet-level caching. The tables include the NPHT (Name Prefix
Hash Table) and CS (Content Store). Each entry of the tables is
identified by the name of the content. When incoming NDNx
packets are processed by CPU cores in parallel, at least, the
tables’ entries of the same name should not be simultaneously
accessed by multiple CPU cores. Thus we divide the tables to
multiple groups of tables as shown in Fig. 2 so that each group of
tables have entries of disjoint names with those of the other
groups.

An intuitive way of grouping is to assign different name
spaces to individual groups of tables similarly to [4]. No CPU
core can access any entry which is not assigned to it because each
entry of any table is identified by the name of incoming packet.
We divide the name space of NDNx to M independent name
spaces by hashing a root prefix of name, i.e., the first component
of a hierarchical human-readable name, to M hash values. (ܯ ൌ 4
in Fig. 2) The names of the same hash value are assigned to the
same group. Hashing root prefixes comes from the fact that
entries of NPHT that have a parent-child relationship also have a
link between them [2].

3.2.2 Re-assignment Algorithm
In order to satisfy the second requirement, a dispatcher of
dispatching incoming NDNx packets to CPU cores is designed as
follows. As shown in Fig. 2, the dispatcher which is assigned to
some core, e.g., Core #0, in Fig. 2, receives an NDNx packet and
dispatches it to the CPU core, e.g., Core #1 in Fig.2. The

dispatcher assigns each group of the tables to one CPU core and
re-assigns the groups depending on the loads of the corresponding
CPU cores. For example, when some CPU cores are lightly loaded,
it re-assigns some groups assigned to it to other active CPU cores,
so that the CPU core becomes inactive. On the contrary, when
some CPU core is heavily loaded, some of their groups of tables
are re-assigned to other CPU cores.

In order to do such re-assignments, we introduce a data
structure (the CPU Table in Fig. 2) which manages pending
incoming NDNx packets which are dispatched to individual
groups, but are not processed. The dispatcher always monitor the
numbers of pending packets and the loads of all CPU cores and
re-assigns the groups so that that none of CPU cores is lightly
loaded.

We omit the details of the re-assignment procedure. We only
address the following three issues to design the algorithm: The
first issue is how other processes than NDNx packet forwarding is
assigned to CPU cores. We assume that one CPU core, i.e., Core
#0 in the figure, is dedicated to them. Such processes include
those of the dispatcher, forwarding IP packets encapsulating
NDNx packets and routing protocols.

The second issue is the number of groups. Here, let M and N
be the numbers of the groups and the CPU cores, respectively. M
is any integer m such that ݉ ൒ ܰ െ 1 because one CPU core is
dedicated to the dispatcher. We pick up N as m and thus M is N in
the rest of the paper. We assume a simple re-assignment algorithm
such that if the incoming packet rates to some CPU cores are
heavy, some of the groups are re-assigned to in-active CPU cores.
On the contrary, if the rates to some active CPU cores are light,
the groups on it are re-assigned to active CPU cores. Since an
active CPU core consumes the maximal power as described in
section 4.3, the algorithm need not carefully re-assign groups of
tables. The third issue is about caching hit rates when a CS is
divided to smaller ones due to the above grouping and we address
it in section 6.2.

4. POWER CONSUMPTION MODEL
We develop a power consumption model of multicore software
NDNx router to satisfy the following requirements. The first
requirement is that the model should reflect loads on a hardware
platform. It means that the consumed power is a function of the
loads. Such loads include a CPU core load, an access to a DRAM
(DDR3) device and so forth. The second requirement is that the
above loads on the hardware platform should be derived from
loads of ICN packet forwarding. Sections 4 and 5 address the first
and second requirements, respectively.

4.1 Formulation

We formulate the power consumed by the PC platform of the
minimum configuration shown in Fig.1 (b). The power

௥ܲ௢௨௧௘௥ሺܿݏ݁ݎ݋, ூ௉ሻ [W] is defined in equation (1) and it is݁ݐܽݎ
parameterized by the following two parameters: the number of
active CPU cores, i.e., cores, and the IP packet forwarding rate,
i.e., ݁ݐܽݎூ௉ [packet/s].

௥ܲ௢௨௧௘௥ሺܿݏ݁ݎ݋, ூ௉ሻ݁ݐܽݎ ൌ ௖ܲ௣௨ሺܿݏ݁ݎ݋ሻ ൅ ௠ܲ௘௠ሺܾݏ݁ݐݕሻ

 ௡ܲ௜௖ሺ ݁ݐܽݎூ௉ሻ ൅ ூܲ஽௅ா ሾWሿ ሺ1ሻ

 ௖ܲ௣௨ሺܿݏ݁ݎ݋ሻ [W]: The power consumed by the CPU device. It
is the function of the number of active CPU cores ܿݏ݁ݎ݋.

Core #0

CPU Table

Dispatcher

Core #1

packet packet

active

Packet
Forwarding

Tables

Core #2

Packet
Forwarding

Core #3

inactive

Packet
Forwarding

active

Tables

Tables Tables

Figure 2. Parallel Processing of NDNx Packets.

159

 ௠ܲ௘௠ሺܾݏ݁ݐݕሻ [W]: The power consumed by accessing the
DDR3 device. It is the function of the number of bytes which
are accessed per second.

 ௡ܲ௜௖ሺ ݁ݐܽݎூ௉ሻ ሾWሿ: The power consumed by the NIC. It is the
function of the IP packet forwarding rate ݁ݐܽݎூ௉.

 ூܲ஽௅ா ሾWሿ: The power consumed by the chassis when the router
is idle. It includes the power of all devices.

In this section, we empirically measure the above four terms
in order to model them. The measurement conditions are as
follows: The PC is a PC server with Xeon E3-1220 processor
(3.10 GHz*4 cores CPU and DDR3 16 GB memory device). One
Intel Ethernet Converged Network Adapter X540-T2 (10 GbE
NIC) and a Western Digital 2 T bytes SATA 3.5 inch HDD (Hard
Disk Drive) are used. The operating system is Ubuntu 13.10. We
use the power meter and the current transformer developed by
Omron (ZN-CTX21 and ZN-CTS51-200As). The power is
measured in the unit of Joule/s, i.e., Watt. We set the clock
frequency of the CPU device at 1.6 GHz in order to avoid effects
from the CPU clock frequency adaptation functions which modern
CPU devices have. Each measurement under the same condition is
performed twenty times and its measurement duration is ten
minute long.

4.2 Power Consumed by Chassis

We measure the power consumed by the PC under the condition
that all CPU cores are inactive (idle) and that the NIC is
connected to a LAN switch, but any frame is neither sent nor
received. The average and distribution are 36.06 [W] and 3.69 ·
10ି଺ and thus we determine ூܲ஽௅ா to be 36.06 [W]. Besides we
measure the average power of the NIC at the idle time ேܲூ஼ூ஽௅ா
and its two-sided 95% confidence intervals are 13.42 and 13.90
[W].

4.3 Power Consumed by CPU Cores

The power consumed by the CPU device ௖ܲ௣௨ሺܿݏ݁ݎ݋ሻ is
determined by the number of active CPU cores ܿݏ݁ݎ݋ as shown
by the equation (2). This subsection shows that the power
consumed by the CPU device is digitized by the number of active
CPU cores.

௖ܲ௣௨ሺܿݏ݁ݎ݋ሻ ൌ ൞

5.98 ሾWሿ ሺܿݏ݁ݎ݋ ൌ 1ሻ
8.20 ሾWሿ ሺܿݏ݁ݎ݋ ൌ 2ሻ

11.50 ሾWሿ ሺܿݏ݁ݎ݋ ൌ 3ሻ
14.90 ሾWሿ ሺܿݏ݁ݎ݋ ൌ 4ሻ

 ሺ2ሻ

First, to show that power consumed by active CPU cores is
digitized by their number, we measure the power consumed by
one CPU core at various loads. We run a simple program which
repeatedly performs the sequence of computations: arithmetic
operations for 12.5 µs and, sleep for a fixed duration, arithmetic
operations for 25.5 µs and sleep for a fixed duration. The CPU
core is made inactive by using nanosleep command of Linux and
the minimum sleeping duration is about 55 µs . This sequence
emulates NDNx packet forwarding when a cache hit rate is 0, as
described in Section 6. The 12.5 µs and 25.5 µs correspond to the
duration when the NDNx router forwards one Interest packet to an
upstream router and that when it forwards one Data packet to a
downstream router, respectively. Thus we can regard the rate of
the repetitions [sequence/s] as the input Interest packet rate
[packet/s].

Figure 3 shows the measured power at various converted
input Interest packet rates [packet/s] and the power that one active

CPU core consumes (the dotted line in Fig. 3). From the
observation below, we conclude that an active CPU core
consumes the maximum power. One CPU core consumes about
90% of the maximum power of one CPU core even if the input
Interest packet rate, i.e., 6756.76 [packet/s], is just about 25.7% of
the maximum rate which one CPU core provides. Please see the
measured power at the rate of 6756.76 [packet/s].

Second, we measure the power consumed by 1, 2, 3 and 4
CPU cores by running a program which calculates arithmetic
operations. Figure 4 shows the measured power with a scattered
graph. The averages for CPU cores are the constants in equation
(2).

4.4 Power Consumed by Memory Device
We formulate the power consumed by accessing data in the DDR3
device ௠ܲ௘௠ሺܾݏ݁ݐݕሻ as a function of the number of accessed
bytes per second ܾݏ݁ݐݕ [byte/s] as follows:

௠ܲ௘௠ሺܾݏ݁ݐݕሻ ൌ ெܲாெூ஽௅ா ൅ ஻ܲ௒்ா · ሾWሿ , ሺ3ሻ ݏ݁ݐݕܾ

where ெܲாெூ஽௅ா is 1.10 [W] and ஻ܲ௒்ாis 0.44 · 10ିଽ [Joule/byte].
The objectives of this subsection are to validate that the power
consumed by accessing the DDR3 device is proportional to the
rate of accessing it [21] and to decide the constants ெܲாெூ஽௅ா and

஻ܲ௒்ா in equation (3).

We run the program which repeatedly reads 8 byte data from
the array allocated by the malloc function. We measure the
following values at various sizes of the arrays: 32 MBs, 64 MBs,
256 MBs and 512 MBs.

 The power consumed by the PC hardware platform [W]: We
derive the power consumed by accessing the DDR3 device by

 0

 1

 2

 3

 4

 5

 6

 7

 0 1000 2000 3000 4000 5000 6000 7000

Po
w

er
 [

W
]

Packet Rate [packet/s]

full

 0

 5

 10

 15

 20

 1 2 3 4

Po
w

er
 [

W
]

The Number of CPU Cores

Figure 3. Power Consumed at Various Loads.

Figure 4. Power Consumed by Multiple CPU Cores.

160

subtracting the power consumed by one active CPU core (5.98
W) from the measured power.

 The average number of accessed bytes in the DDR device per
second (by using the Intel® Performance Counter Monitor).

Figure 5 shows the power consumed by the DDR3 device at
various access rates [byte/s]. We decide the two constant
 ெܲாெூ஽௅ா and ஻ܲ௒்ா by using least squares approximation. We
assume that the power consumed by reading and writing data is
the same.

4.5 Power Consumed by NIC
We formulate the power consumed by the NIC is a function of the
IP packet forwarding rate as

 ௡ܲ௜௖ሺ ݁ݐܽݎூ௉ሻ ൌ ௉ܲ஺஼௄ா் · ூ௉ ሾWሿ, ሺ4ሻ݁ݐܽݎ

where ௉ܲ஺஼௄ா் is 3.04 · 10ି଺ [Joule/packet].

We measure the power consumed by the NIC at various rates
in the following way: The three PCs are connected by 10 Gbps
Ethernet links. One PC is used as an IP router and the other two
are used as a client and server. The client sends UDP packets at
various rates by running a simple program which switches
between sending a UDP packet and sleeping. We measure the
power consumed by the NIC by choosing 1500 bytes as the size of
the IP packets.

Figure 6 shows the power consumed by the NIC. The power
is not exactly proportional to the forwarding rate; however, we
assume that is proportional to the forwarding rate ݁ݐܽݎூ௉. This is
because its two-sided 95% confidence intervals are just 2.51 and
2.57 [W] and thus errors between the actual and estimated values

would be negligible. We decide the constant ௉ܲ஺஼௄ா் using least
squares approximation.

5. PACKET FORWARDING ANALYSIS
This section addresses how the three parameters cores, bytes and
 ூ௉ of the PC hardware platform’s model are defined. These݁ݐܽݎ
three parameters are defined as functions of the average input
Interest packet rate ߣூ஼ே

ூே [packet/s] and the average cache hit rate

஼ܲௌ
௛௜௧ as shown in the equations (5) to (8). This enables equation

(1) to be easily used in mathematical analysis and simulations.
This is because most studies on caching techniques estimate cache
hit rates of all routers under assumed input Interest packet rates to
edge routers.

ூ஼ேߣ൫ݏ݁ݎ݋ܿ
ூே , ஼ܲௌ

௛௜௧൯ ൌ ඃߣூ஼ே
ூே · ݈ܿ௜௖௡൫ ஼ܲௌ

௛௜௧൯ ⁄஼ைோாܮܥ ඇ ൅ 1 ሺ5ሻ

݈ܿ௜௖௡൫ ஼ܲௌ
௛௜௧൯ ൌ ෍ ௙ܥ

௙אிభ

൅ ஼ܲௌ
௛௜௧ ڄ ෍ ௙ܥ

௙אிమ

 ൅൫1 െ ஼ܲௌ
௛௜௧൯ ڄ ෍ ௙ܥ

௙אிయ

 ሾcyclesሿ

 ൌ 17718 ൅ ஼ܲௌ
௛௜௧ · 4917 ൅ ൫1 െ ஼ܲௌ

௛௜௧൯ · 31069 ሺ6ሻ

ூ஼ேߣ൫ݏ݁ݐݕܾ
ூே , ஼ܲௌ

௛௜௧൯ ൌ ூ஼ேߣ
ூே · ௌூ௓ா݇݊ݑ݄ܥ · ܴ ሾbyte s⁄ ሿ ሺ7ሻ

ூ஼ேߣூ௉൫݁ݐܽݎ
ூே , ஼ܲௌ

௛௜௧൯ ൌ ூ஼ேߣ
ூே · ሺ2 െ 1 ஼ܲௌ

௛௜௧ሻ ሺ8ሻ

The constant ܮܥ஼ைோா is the maximum CPU clock cycles of
one CPU core per second. In this paper, ܮܥ஼ைோா is 1.6 G [cycle/s].
The constant ܴ is 11.03 (See section 5.3) and ݇݊ݑ݄ܥௌூ௓ா is the
average chunk size [bytes]. The first term, i.e., ඃߣூ஼ே

ூே ·
݈ܿ௜௖௡൫ ஼ܲௌ

௛௜௧൯ ⁄஼ைோாܮܥ ඇ, of equation (5) is the number of cores for
the NDNx packet forwarding engine and the second term, i.e. 1,
represents the CPU core which carries out all procedures other
than NDNx packet forwarding. This corresponds to the core Core
#0 in Fig. 2.

5.1 IP Packet Forwarding Rate
This subsection describes how ݁ݐܽݎூ௉൫ߣூ஼ே

ூே , ஼ܲௌ
௛௜௧൯ is calculated

assuming that Interest and Data packets are encapsulated by
UDP/IP packets. First, we explain how Interest and Data packets
are forwarded. When the input Interest packet rate and the cache
hit rate are ߣூ஼ே

ூே and ஼ܲௌ
௛௜௧, respectively, Interest and Data packets

are received and sent per second in the following way:

 ߣூ஼ே
ூே Interest packets are received from downstream routers,

 ஼ܲௌ
௛௜௧ Data packets are sent back to them

 ߣூ஼ே
ூே · ሺ1 െ ஼ܲௌ

௛௜௧ሻ Interest packets are sent (forwarded) to
upstream routers

 ߣூ஼ே
ூே · ሺ1 െ ஼ܲௌ

௛௜௧ሻ Data packets are received from the
upstream routers

 ߣூ஼ே
ூே · ሺ1 െ ஼ܲௌ

௛௜௧ሻ Data packets are sent back to the
downstream routers

Since each NDNx packet is encapsulated by an IP packet,
ூ஼ேߣூ௉൫݁ݐܽݎ

ூே , ஼ܲௌ
௛௜௧൯is calculated as follows: ߣூ஼ே

ூே · ሺ2 െ 1 ஼ܲௌ
௛௜௧ሻ IP

packets are sent and the same number of IP packets are received
per second. It means that ߣூ஼ே

ூே · ሺ2 െ 1 ஼ܲௌ
௛௜௧ሻ IP packets are

forwarded. Thus ݁ݐܽݎூ௉൫ߣூ஼ே
ூே , ஼ܲௌ

௛௜௧൯ is ߣூ஼ே
ூே · ሺ2 െ 1 ஼ܲௌ

௛௜௧ሻ . We
note that in this paper we assume that one IP packet encapsulates
one NDNx packet.

5.2 CPU Clock Cycles
The number of active CPU cores ܿݏ݁ݎ݋൫ߣூ஼ே

ூே , ஼ܲௌ
௛௜௧൯ is estimated

based on the number of CPU clock cycles which the packet

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 1 2 3 4 5 6 7 8 9 10 11 12

Po
w

er
 [

W
]

Accsess Rate [Gbyte/s]

 0

 0.5

 1

 1.5

 2

 0 100000 200000 300000 400000

Po
w

er
 [

W
]

Packet Rate [packet/s]

Figure 5. Power Consumed by DDR3 Device.

Figure 6. Power Consumed by NIC.

161

forwarding engine uses. It is obtained by ceiling the value which
is obtained by dividing ߣூ஼ே

ூே · ݈ܿ௜௖௡൫ ஼ܲௌ
௛௜௧൯ by the CPU clock

cycles of one CPU core per second.

 ݈ܿ௜௖௡൫ ஼ܲௌ
௛௜௧൯[cycles] is the average number of CPU clock cycles

to perform all functions (in the NDNx source code) which are
executed after receiving one Interest packet when the cache hit
rate is ஼ܲௌ

௛௜௧. Equation (6) describes how ݈ܿ௜௖௡൫ ஼ܲௌ
௛௜௧൯ is calculated.

 ௙ in equation (6) is the average number of CPU clock cycles toܥ
execute a block f. We call functions which are run sequentially as
a block and classify all the functions in the NDNx source code
into the following three groups of blocks so that the average
number of CPU clock cycles is calculated from a cache hit rate of
the router:

 The group of blocks F1 : The block is always run when an
Interest packet is received.

 The group of blocks F2: The block is run only when an Interest
packet hits a Data packet contained in the CS.

 The group of blocks F3: The block is run only when an Interest
packet does not hit any Data packet contained in the CS.

Thus the individual terms ∑ ிభא௙௙ܥ
, ∑ ிమא௙௙ܥ

 and ∑ ிయא௙௙ܥ

are the total CPU clock number consumed by executing all the
blocks in the group for processing one pair of an Interest and the
corresponding Data packets. Since an Interest packet corresponds
one-to-one with a Data packet, ∑ ிభא௙௙ܥ

൅ ஼ܲௌ
௛௜௧ ڄ ∑ ிమא௙௙ܥ

൅
൫1 െ ஼ܲௌ

௛௜௧൯ ڄ ∑ ிయא௙௙ܥ
 calculates the average CPU clock cycle

number with the cache hit rate ஼ܲௌ
௛௜௧ when one Interest packet is

received. In section 5.4, we classify all the functions into the three
groups. In section 5.5, we empirically measure individual bocks’
CPU clock cycles.

5.3 Access Rate to DDR3 Device in Bytes
This subsection describes how ܾݏ݁ݐݕ൫ߣூ஼ே

ூே , ஼ܲௌ
௛௜௧൯, i.e., the average

number of accessed bytes in the DDR3 per second, is derived.
Since it is difficult to precisely calculate how many bytes in the
DDR3 device the blocks access at run time, we estimate it in the
following way: First, we empirically measure how many bytes in
the DDR3 device are accessed by observing a communicating
NDNx router. We derive the ratio of the number of accessed (read
or written) bytes in the DDR3 to that of bytes of contents which is
retrieved. R in the equation (7) is this ratio. For example, if R is 10,
when a 1 GBs of content is retrieved, the NDNx router is assumed
to access 10 GBs in the DDR device.

Second, we assume that the above ratio is always the same
for any NDNx packets. Here, since ߣூ஼ே

ூே · ௌூ௓ா݇݊ݑ݄ܥ is the
average byte number of retrieved contents, equation (7) estimates
the number of accessed bytes in the DDR3 device per second. We
measure the average number of accessed bytes in the DDR3
device per second during the experiments in section 5.3. Each
client retrieves between a 1 GBs and 4 GBs of contents from a
server. We set the constant ܴ as 11.03 in the equation (7) by
averaging the measured values.

5.4 NDNx Source Code Analysis
In this subsection, we classify all the functions of the NDNx
source code into the three groups of blocks and analyze packet
flows among the blocks.

The blocks of group F1 are the most darkly shaded in Fig. 7.
For example, the block Duplication Check checks whether the
nonce of the received Interest packet is the same as one of the

previously received Interest packets or not. If this check is passed,
the PIT (Pending Interest Table) is looked up to check the Interest
packet is already stored in the PIT. If this check is true, the block
Name Prefix HTE Lookup&Insert creates a NPHT entry and then
the block CS Lookup checks whether the corresponding Data
packet is stored at the CS or not. Otherwise, the blocks which are
paled in Fig. 7, e.g., Insert HTE Lookup&Insert, FIB lookup and
PIT Insert, are executed. Here, the probability of this check’s
being true is negligible because the number of outstanding Interest
packets of which the corresponding are sent back from the
upstream route is nearly 0. Thus the model assumes that the
former blocks are always executed and the latter blocks are never
executed.

The blocks of group F2, which are executed when the Interest
packet is hit, are medium shaded in Fig. 7. Since the Interest
packet is hit at the CS, the block Interest Consume finds other
pending Interest packets in the PIT related to the name such as
Interest packets which are designated the lengths of names and do
not exactly match the names but satisfy requirements for matching,
and then sends back the Data packets to all the requesting
downstream routers.

The blocks of group F3, which are executed when the Interest
packet is not hit, are lightly shaded in Fig. 7. When the Interest
packet does not hit any Data packets in the CS, it is forwarded to
the upstream router. The three blocks are executed to forward
such an Interest packet. Then the router receives the Data packet
corresponding to the forwarded Interest packet, the router
executes the two blocks to send back the Data packet after storing
it at the CS.

We note that the blocks do not include functions for
processing XML-based packets and their parameters. As the
authors in [2] show, NDNx packet formats are compliant with
XML and processing XML-based packets are 6 to 7 times heavier
than the other procedures. We ignore these because future NDNx
implementations may change XML-based formats to binary
formats so that such packet format processing overhead would be
negligible.

5.5 Clock Cycle Measurements
We measure CPU clock cycles of each block as follows: We
connect three PCs via a Gigabit Ethernet switch. One PC acts as
an NDNx router and two PCs act as a client and a server,
respectively. At each server PC, 10 contents are stored and each
size is 30 MBs. Four virtual machines are run in a client PC. At
each virtual machine, one consumer is run and it requests two of
contents at the server PC. Since four virtual machines are running,
the client PC sends 8 Interest packets in parallel so that the CPU
load of the router is high.

PIT
Lookup

Interest HTE
Lookup & Insert

Name Prefix
HTE Lookup

& Insert

CS
Lookup

FIB
Lookup

PIT
Insert

hit

miss

miss

hit

hit

hit

Send
Back

Forward
to Next

DiscardDiscard

Interest HTE
Lookup & Insert

FIB
Lookup

PIT
Inserthit

miss

Data

Interest

Interest Consume CS Lookup & Insertmiss
miss

hit
hit

Discard Discard

Duplication
Check

Discard

miss

HTE: Hash Table Entry

Interest Consume

: Packet Flow

(1-)

Figure 7. Flow of Blocks of NDNx Software.

162

The parameters at the NDNx layer are chosen as follows:
The length of content name is 20 characters. The size of CS is
400,000 chunks (about 16 GB) and the size of each content is 30
MBs. 10 contents are stored at each server. These parameters are
chosen so that some blocks do not consume extremely large
power. For example, the number of components of the name is set
to 1. This is because the current implementation of block, Name
Prefix HTE Lookup&Insert is extremely time-consuming when
the component number is large and because the procedures used
for name prefix filtering might be deleted in the future.

The NDNx software is run by adding RDTSC (Read Time-
Stamp Counter), which reads a time stamp counter, a register
incremented by CPU clock cycles in order to measure how many
clock cycles each block consumes. Table 1 shows the average
CPU clock cycles of individual blocks.

Table 1. The Numbers of Average CPU Clock Cycles

Group Block f ݏ݈݁ܿݕܥ
F1 Duplication Check 2068
F1 PIT Lookup 1029
F1 Name Prefix HTE Lookup&Insert 4023
F1 CS Lookup 10598
F2 Interest Consume (Interest) 4917
F3 Interest HTE Lookup&Insert 1684
F3 FIB Lookup 807
F3 PIT Insert 1232
F3 CS Lookup&Insert 18176

6. CASE STUDY
This section addresses the following three issues in order to
validate the power consumption model. The first issue is how
cache hit rates of all routers are affected under the condition
where the CS is divided to smaller CSs. The second issue is how
our reassignment algorithm contributes to power reduction
compared with the fixed dispatching such that groups of tables are
assigned to the fixed CPU cores. The third issue is a good
example of using our model. We discuss the issues after
describing the scenarios used.

6.1 Scenarios
This section shows the conditions of estimations.

 The network topology is a three-level complete binary-tree of
NDNx routers. The repository of contents is stored at the server
directly connected to the root router.

 The number of contents G is 160,000. The size of contents is 10
MBs based on a recent study by Zhou et al. which estimates
that there are currently 5 · 10଼ YouTube videos of average size
10 M bytes [22]. Each content is divided to chunks whose size
is 1500 byte long.

 The number of CPU cores N of all level routers is 4. The
number of groups of the tables M is 4. The total size of CSs of
each router is 16 G bytes and that of each CS is 4 G bytes.

 The popularities of contents are defined in classes. Each class
includes 4 contents. The popularities of classes is a Zipf
distribution wherein ߙ ൌ 0.8 [23].

 One client is connected to the 1st level router. The rate at which
each client sends Interest packets is chosen so that the
maximum number of CPU cores of the 3rd level router is less
than 4. The Interest packet rate is 32,810 [packet/s]. This
corresponds to 0.394 Gbps content retrieval.

6.2 Cache Hit Rate Calculation
We calculate the cache hit rates of all routers in the complete-
binary tree topology based on the model which Che et al. [17] and
Fricker et al. [18] propose. We assume that a content request
process is an independent Poisson process with mean rate λ. We
introduce classes to popularities of contents, so that contents of
the same popularity distribution are handled by M independent
caching algorithms based on LRU (Least Recently Used). Thus
each class consists of M (=4) contents and their popularity is the
same. The number of classes K is ܯ/ܩ where ܩ is the number of
all contents. The popularity of each class ݍ௞ is defined in the
equation (9).

௞ݍ ൌ
ଵ ௞ഀ⁄

∑ ଵ
௡ഀൗ಼

೙సభ
 ሺ9ሻ

The CS of C contents is divided into M equal-sized CSs and
the size of each CS is ܥ௠ ൌ ܥ ⁄ܯ contents. Note that the CS
corresponds to the sum of divided CSs of the proposed router in
Section 4. Here, we assume that caching algorithms are
independently executed under the IRM for CSs and thus that
content requests independently arrive at individual CSs. This
means that any content in the same class exclusively arrives at the
same CS. Here, the number of contents which arrive at each CS is
defined as ܩ௠ ൌ ܩ ⁄ܯ ൌ ܭ . Thus, the mean rate of all content
requests ߣ௠, the popularity of the contents at kth class ݍ௠,௞ and the
mean rate of this content ߣ௠,௞ of the divided CS m are defined in
equations (10) to (12).

௠ߣ ൌ ߣ ⁄ܯ ሺ10ሻ ݍ௠,௞ ൌ
1 ݇ఈ⁄

∑ 1
݊ఈൗீ೘

௡ୀଵ

 ሺ11ሻ

௠,௞ߣ ൌ ௠ߣ · ௠,௞ ሺ12ሻݍ

Since we assume the caching algorithms of individual CSs
are independently executed, we can derive the cache hit rate of the
content at the kth class ݌௠,௞ by equation (13) and ݐ௠,஼೘

 is
obtained by solving equations (14). (See the details in [18].)

௠,௞݌ ൌ 1 െ ݁ିఒ೘,ೖ· ௧೘,಴೘ ሺ13ሻ ܥ௠ ൌ ෍ ௠,௞ ሺ14ሻ݌

ீ೘

௞ୀଵ

We can derive the expected value of cache hit rate of the
divided CS ݌௠ by equation (15) and finally derive the expected
value of the CS p by equation (16).

௠݌ ൌ ෍
௠,௞ߣ

௠ߣ

ீ೘

௞ୀଵ

݌ ௠,௞ ሺ15ሻ݌ ൌ ෍
௠ߣ

ߣ

ெ

௠ୀଵ

 ௠ ሺ16ሻ݌

We assume (i) that the forwarding process of the kth class
content of each caching algorithm toward an upstream router is
also an independent Poisson process with the mean rate Φ௠,௞ and
(ii) that the arrival process of content requests on an upstream
router is the superposition of forwarding processes from
downstream routers. Φ௠,௞ is obtained by solving equation (17).

௠,௞ߔ ൌ ௠,௞・ሺ1ߣ െ ௠,௞ሻ ሺ17ሻ݌

From these two assumptions (i) and (ii), we can derive cache
hit rates of the 2nd and 3rd level routers by recalculating based on
equations (13) to (16).

6.3 Power Reduction Due To Reassignment
We compare the power consumed by routers both with and
without our reassignment algorithm of groups of tables as follows.

163

We calculate the cache hit rates of the 1st , 2nd and 3rd routers
based on section 6.2 and they are 0.188, 0.055, 0.043, respectively.
We assume that CPU cores of all routers consume the maximum
power when the reassignment algorithm is not used (without re-
assignment in Figures 8 and 9). Figure 8 and 9 show the power at
the various Interest packet sending rates up to 32,810 [packet/s].

Figure 8 and 9 show the total power consumed by all routers
and the power which is obtained by subtracting the power
constantly consumed, i.e., the sum of all routers’ ூܲ஽௅ா . In other
words, the latter power is the power proportional to loads. The
reason why we show Fig. 9 is as follows. The loads of all routers
are light due to the small network configuration. The power
constantly consumed accounts for a large portion of the total
tower. In other words, the power proportional to loads accounts
for just a small portion. Thus the difference between the two, i.e.,
with re-assignment and without re-assignment in Fig.8 is small
even if the power proportional to loads would account for a large
portion in actual large-scale networks.

x

The observation from the figures is that the reassignment
algorithm reduces power consumed by an NDNx network,
especially at light loads. However, we note that estimations with
the algorithm are the minimum values which would be obtained in
ideal conditions.

6.4 Power Reduction Due To Caching
Caching reduces the number of forwarded NDNx packets as the
prices for CPU clock cycles for packet level caching, i.e., those of

CS Lookup and CS Lookup& Insert blocks in Table 1. Thus the
following question is raised. Whether does caching actually
reduce the power consumed by an NDNx network? Thus we try to
answer this question by comparing the power consumed by three
configurations of networks: all routers, only the 1st level routers
and none of routers provide the cache functionality. The three
configurations called as cnfg-all, cnfg-1st and cnfg-none,
respectively.

Table 2 show the power consumed in the three configurations.
The second and third rows show the total power and the power
proportional to loads. The difference in the row (b) somewhat
remarkable compared with that in the row (a). The power of cnfg-
all is the largest among three configurations. At least, in this small
network, the packet number reduction due to caching does not
compensate for the prices for CPU clock cycles for packet level
caching.

This observation is somewhat contradictory to the intuition
that caching would reduce power consumptions. What we want to
say from the observation is not that caching is not effective to
reduce power, but that the precise power consumption model
estimating the power consumed by packet forwarding is inevitable
both to estimate power consumed by an NDNx network and to
analyze tradeoffs between the reduction of forwarded packets and
the increase of power due to packet level caching.

Table 2. Power Consumed by NDNx Network [W]

 cnfg-all cnfg-1st cnfg-none
(a)Total power 335.2 325.3 326.0
(b)Power
proportional to load

82.9 73.0 73.7

6.5 Lessons Learned
The power consumption model which we develop and the

case studies are pre-mature, but we obtain important lessons to
achieve power-efficient ICN networks.

 The power consumed by ICN packet forwarding and packet
level caching accounts for a large portion of the power
consumed by an ICN network. Although this may be partly
because the current ICN routers’ designs are not mature, it is
important to understand more precisely how ICN packet
forwarding consumes power and to improve the forwarding
algorithm. Our power consumption model focussing on packet
forwarding would play an important role to do so.

 The proposed algorithm of re-assigning loads, e.g., the groups
of tables, among CPU cores is such an example of algorithm.
The algorithm is designed so that the number of active CPU
cores is minimized. Multicore software ICN routers should be
designed to consider efficiency in both forwarding
performances and power consumed by packet forwarding.

 Caching itself does not reduce power due to the prices for CPU
clock cycles for packet level caching in some environments.
This shows that reducing the power is not trivial and it is an
important research topic.

 Switching-off devices when their load is light is useful to
reduce power. The proposed re-assignment algorithm is such an
example. Another promising candidate is to switch-off NICs
because the power at the idle time is high. For example, the
power of the NIC in this paper is between 13.42 and 13.90 W
and it is about three times larger than that of one CPU core.
This observation implies that caching would play an important
role to achieve traffic engineering techniques for switching-off
redundant links [24].

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 5000 10000 15000 20000 25000 30000

Po
w

er
 [

W
]

Interest Packet Rate per Client [packet/s]

with re-assignment
without re-assignment

 0

 20

 40

 60

 80

 100

 120

 140

 0 5000 10000 15000 20000 25000 30000

P
ow

er
 [

W
]

Interest Packet Rate per Client [packet/s]

with re-assignment
without re-assignment

Figure 8. Total Power.

Figure 9. Power Obtained by Subtracting ࡱࡸࡰࡵࡼ.

164

 Although the model is hardware platform dependent, we
consider that the models on the other hardware platforms are
easily developed. First, our modelling technique is concise and
it specifies the power as functions with a few parameters.
Second, most assumptions on power consumptions are
confirmed in section 4 and we believe that they would be true
on other platforms. An example assumption is that power
consumed by the DDR device is proportional to the access rate
[byte/s].

 In addition, although the model focuses on a specific PC which
is implemented in terms of current technology, we believe that
the modelling method which the paper proposes is applicable to
model multi-core software routers in the future due to the
following reasons: First, the hardware platforms of multicore
software routers and PCs of current technology are similar as
described in section 3.1. Second, since most technologies of
devices including memory devices are mature, it is expected
that their performances and consumed energy are gradually
improved.

Finally, we note that the current model does not precisely
estimate power consumed by longest-prefix matching when the
number of entries in the NPHT is large. This modelling is
necessary to model backbone routers and thus we are on the way
to extend the model so as to provide such modeling.

7. CONCLUSION
This paper develops a power consumption model of a multicore
software ICN router focusing on power consumed by packet
forwarding and packet-level caching. We develop the model from
a PC hardware platform and the NDNx/CCNx source code
assuming that commercial multicore software routers and PC-
based routers similarly consume power. We obtain several lessons
from developing the precise power consumption model. We
believe that modeling power consumptions is as an important
research topic in networking communities as in hardware/system
communities wherein power consumption models of memory
devices [10] and server systems [21] are developed.

8. ACKNOWLEDGMENTS
The research leading to these results has partially received
funding from the EU-JAPAN initiative by the EC Seventh
Framework Programme (FP7/2007-2013) Grant Agreement No.
608518 and NICT under Contract 167 (the GreenICN project).

9. REFERENCES
[1] Dannewitz, C., Imbrenda, C., Kutscher, D. and B. Ohlman. Survey

of Information-Centric Networking. IEEE Communication
magazine, Vol. 50, Issue 7, pp.26-36, July 2012.

[2] Yuan, H., Song, T. and Crowley P. Scalable NDN forwarding:
Concepts, issues and principles. In Proceedings of IEEE ICCCN
2012, pp. 1–9, Aug. 2012.

[3] Perino, D. and Varvello, M. A Reality Check for Content Centric
Networking. In Proceedings of ACM ICN’11, pp. 44-49, Aug. 2011.

[4] So, W., Narayanan, A., Oran, D. and Stapp, M. Named Data
Networking on a Router: Forwarding at 20Gbps and Beyond. In
Proceedings of ACM SIGGOMM 2013, pp. 495-496, Aug. 2013.

[5] So, W., Narayanan, A., Oran, D. Named Data Networking on a
Router: Fast and DoS-resistant Forwarding with Hash Tables. In
Proceedings of ACM/IEEE ANCS '13 pp.215-226, Oct. 2013.

[6] Rossini, G., Rossi1, D., Garetto, M. and Leonardi, E. Multi-Terabyte
and Multi-Gbps Information Centric Routers. In Proceeding of IEEE
Infocom 2014, pp.181-189, May 2014.

[7] Fukushima, M., Tagami, A. and Hasegawa, T. Efficient Lookup
Scheme for Non-aggregatable Name Prefixes and Its Evaluation.
IEICE Trans. on Communications, Vol. E96-B No.12, pp.2953-
2963, Dec. 2013.

[8] Choi, N., Guan, K., Kilper, D. and Atkinson G. In-network caching
effect on optimal energy consumption in content-centric networking.
In Proceedings of 2012 IEEE ICC, pp. 2889–2894, June 2012.

[9] Imai, S., Leibnitz, K. and Murata M. Energy efficient data caching
for content dissemination networks. Journal of High Speed
Networks, vol. 19, pp. 215–235, Oct. 2013.

[10] Vogelsang, T. Understanding the Energy Consumption of Dynamic
Random Access Memories. In Proceedings of 43rd IEEE/ACM
MICRO, pp. 363-374, Dec. 2010.

[11] Hewlett-Packard Company. DDR3 memory technology:
http://h20000.www2.hp.com/bc/docs/
support/SupportManual/c02126499/c02126499.pdf

[12] Lee, U., Rimac, I., Kilper D., and V. Hilt, V. Toward energy-
efficient content dissemination. IEEE Network, vol. 25, pp. 14–19,
Mar. 2011.

[13] Lee, U., Rimac, I., and Hilt, V. Greening the internet with content-
centric networking. In Proceedings of the first International
Conference on Energy-Efficient Computing and Networking, pp.
179–182, Apr. 2010.

[14] http://named-data.net/codebase/platform/

[15] Jacobson, V., Smetters, D., Thornton, J., Plass, M., Briggs, N. and
Braynard, R. Networking named content. In Proceedings of ACM
CoNEXT 2009, pp. 1–12, Dec. 2009.

[16] Psaras, I., Clegg, R., Landa, R., Chai, W. and Pavlou, G. Modelling
and Evaluation of CCN-caching Trees. In Proceedings of
Networking’11, pp.78-91, May 2011.

[17] Che, H., Tung, Y. and Wang, Z. Hierarchical Web caching systems:
Modeling, design and experimental results. IEEE J. Selected Areas
in Communications, vol. 20, pp. 1305–1314, Sept. 2002.

[18] Fricker, C., Robert, P. and Roberts, J. A Versatile and Accurate
Approximation for LRU Cache Performance. In Proceedings of
ITC’12, pp.1-8, Sept. 2012.

[19] Bolla, R., Bruschi, R. and Ranieri. Performance and Power
Consumption Modeling for Green COTS Software Router. In
Proceedings of COMSNETS 2009, pp. 1-8, Jan. 2009.

[20] Fayazbakhsh, S., Lin, Y., Tootoonchian, A., Ghodsi, A., Koponen,
T., Maggs, B., Ng, K., Sekar, V. and Shenker, S. Less pain, most of
the gain: incrementally deployable ICN. In Proceedings of ACM
SIGCOMM 2013, pp. 147-158, August 2013.

[21] Kim, M., Ju, Y., Chae, J. and Park, M. A simple Model for
Estimating Power Consumption of a Multicore System Server.
International Journal of Multimedia and Ubiquitous Computing,
Vol.9, No.2, pp. 153-160, 2014.

[22] Zhou, J., Li, Y., Adhikari, K. and Zhang, Z-L. Counting YouTube
Videos via Random Prefix Sampling. In Proceedings of ACM
IMC’11, pp.371-380, Nov. 2011.

[23] Fricker, C. Robert, P., Roberts, J. and Sbihi N. Impact of Traffic Mix
on Caching Performance in a Content-Centric Network. In
Proceedings of IEEE NOMEN 2012, pp. 310-315, March 2012.

[24] Xu, L. and Yagyu, T. Multiple-tree based Online Traffic
Engineering for Energy Efficient Content Centric Networking.
IEICE Technical Report, IA2013-78 , vol.113, no.424, pp.61-66,
Jan. 2014.

165

