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ABSTRACT
Networks are becoming increasingly complex and service
providers incorporate additional functionality in the network
to protect, manage and improve service performance. Soft-
ware Defined Networking (SDN) seeks to manage the net-
work with the help of a (logically) centralized control plane.
We observe that current SDN solutions pre-translate policy
(what) into forwarding rules at specific switches (where).
We argue that this choice limits the dynamicity, flexibility
and reliability that a software based network could provide.
Information Centric Networking (ICN) shifts the focus of
networks away from being predominantly location oriented
communication environments. We believe ICN can signifi-
cantly improve the flexibility for network management. In
this paper, we focus on one of the problems of network man-
agement – service chaining – the steering of flows through
the different network functions needed, before it is delivered
to the destination. We propose Function-Centric Service
Chaining (FCSC), a solution that exploits ICN to provide
flexibility in managing networks that utilize virtualization
to dynamically place functions in the network as required.
We use a real-world topology to compare the performance of
FCSC and a more “traditional” SDN solution. We show that
FCSC reacts to failures with fewer packet drops, adapts to
new middleboxes more quickly, and maintains less state in
the network.
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General Terms
Design; Management
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1. INTRODUCTION
Service provider networks (and networks in general) are

becoming increasingly complex. Both network operators
and users require various additional functionalities in the
network for management and processing of data flows. Soft-
ware Defined Networking (SDN) aims to manage the net-
work and the functions provided by separating the control
plane from the data plane. The SDN controller(s) possess
a global view of the network and can therefore simplify the
network management as compared to the traditional dis-
tributed architectures typical of the Internet. However, even
in an SDN environment, management logic (“what”) is intri-
cately coupled with the node location (“where”). With the
use of virtualization and the prevalence of mobility the loca-
tion of a particular function in the network may no longer be
fixed. We envision that the performance of SDN would be
further improved by incorporating the ideas of information-
centricity that decouple the location of a particular network
function instance from the identity of the function it pro-
vides. In this work, we make a first attempt by incorporating
Information Centric capabilities into a common and impor-
tant problem of network management – Service Chaining.

The need to perform additional processing of packets of a
data flow in the network before it is delivered to the desti-
nation has become an integral element of providing Internet
services. These functions include the modification of the
packet header (e.g., NAT, proxy), discard packets (e.g., fire-
wall), collection of statistical information (e.g., Deep Packet
Inspection (DPI)) or even the modification of the payload
(e.g., optimization and compression). They are provided in
the form of Middleboxes [9, 19, 40] for policy control, secu-
rity and performance optimization. The middleboxes have
to be resident on the path of a flow, which implies that
the traffic has to be deviated from its “natural” IP shortest
path and forced through the middleboxes. We use the term
Service Chaining to describe the action of steering packets
through these middleboxes. For example, a network op-
erator might require flows that access dynamic web pages
such as Facebook, Twitter, FourSquare, Google Instant, or
MyYahoo to go through middleboxes like Content Delivery
Network (CDN), Dynamic Site Accelerator (DSA [1]), TCP
optimization over tunnel, etc., in order to improve the per-
ceived user experience [2].

The limited presence of middleboxes at specific locations
in the network often results in sub-optimal routing and lower
performance (e.g., increased latency, lower throughput, etc.).
This is especially true in environments like cellular networks
[15,16] where middlebox functions are restricted to be in the
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“Network Data Center” and thus have a significant impact
on latency. The recent introduction of Network Function
Virtualization (NFV) [14, 20] promises to make it easier to
dynamically and flexibly deploy middleboxes. NFV allows
for middlebox functions to be virtualized and therefore be
present in greater number and positioned on-demand. We
envisage network service providers will increasingly adopt
NFV to provide network resident functionality, not only
for reducing CAPEX but also for offering more flexibility
to customers who would like customized processing of their
packets. However, managing such a network of dynamically
placed functions can be much more complex. Current rout-
ing protocols deployed in IP networks constrain how packets
can be deviated from well-defined path (e.g., shortest path)
and thus cannot take full advantage of the great flexibility
offered by NFV.

Recently proposed solutions for Service Chaining in Soft-
ware Defined Networking (SDN) [22,33,45] attempt to per-
form Network Management by making use of a (logically)
centralized controller that has the capability to setup flow-
based forwarding rules on the switches [18,27] of the desired
path. Such solutions provide greater control over the net-
work in order to steer packets of a flow more flexibly, without
being constrained by traditional routing such as OSPF and
BGP. But the controller has to keep track of the status of
the middleboxes and the network.

We argue that the existing approaches have a common
issue of unnecessarily coupling the routing with the policy.
I.e., when an SDN controller decides the functions a flow
needs, it also decides the path the flow has to go through and
setup state on the intermediate switches. These solutions
have limitations in scalability, dynamicity and flexibility and
therefore have difficulty in adapting to the requirements of a
large scale, dynamically changing middlebox set supported
by NFV (see §3.3 for detailed descriptions).

Information-Centric Network (ICN [4,21,44]) is a new net-
working paradigm that introduces ContentNames to decou-
ple the user interests from data location. Following this line
of thinking, we present Function-Centric Service Chaining
(FCSC), a novel approach that decouples the functions a
flow needs from the location of network function instances
(and thus routing) via a naming layer (see Fig. 1). Such a
decoupling facilitates the dynamic modification of the func-
tions needed by a flow on the controller or the middleboxes
(e.g., DPI, load balancer). This also enables switches to dy-
namically detect the load (popularity) of a certain function
and accordingly instantiate/dispose of network function in-
stances (co-resident with the switch or on some other node).
The enroute function-based routing allows more dynamic
use of the newly created instances and faster recovery from
node/link failures. FCSC intrinsically supports the pres-
ence of multiple instances for the same functionality and can
perform network-layer load-balancing among these nodes at
any time. By placing the flow state in the packet header,
FCSC helps to reduce the amount of state stored in the net-
work and results in much better scalability compared to the
per-flow state solutions like SDN. FCSC is therefore able to
provide a highly dynamic and adaptive Service Chaining ca-
pability and effectively exploit the promise of NFV in the
software-based network of the future.

The key contributions of this work are:

• We exploit the combination of ICN with SDN to meet
the dynamic requirements of service chaining. We pro-

pose FCSC, a scalable and flexible architecture, that
clearly separates the policy (required functions) from
the routing by introducing a light-weight (function)
naming layer.

• With the help of varying number of flows and dynamic
creation/deletion of virtual service instances on a syn-
thetic and a real-world Rocketfuel topology, we show
how FCSC compliments the current SDN solution in
terms of network state amount, packet drop rate on
node failure and overall latency.

The rest of the paper is organized as follows: §2 dis-
cusses previous work on service chaining and information-
centric network; §3 provides detailed description on the ser-
vice chaining scenario and the problems with the existing
solutions. §4 describes the design rational of FCSC and §5
details upon the solution. §6 illustrates simulation results
and conclusion is inferred in §7.

2. RELATED WORK
In this section, we briefly present existing work on service

chaining, then present an overview of ICN and finally present
existing work that involves both SDN and ICN.

2.1 Existing Solutions for Service Chaining
Existing Service Chaining solutions can be broadly classi-

fied into 3 classes: indirection-based, policy-based and SDN-
based.

2.1.1 Indirection-based Service Chaining:
Several proposals for service chaining regard indirection

as an indispensable element for achieving high flexibility to
support various scenarios including node mobility, caching
and anycast. Works in [6,40] propose an architectural mod-
ification to TCP/IP networks in order to allow further in-
direction than what is supported by DNS, allowing simple
integration of middleboxes into the TCP/IP architecture. [6]
highlights the problem of having an IP address – location-
dependent element – as the identifier of end hosts, and pro-
poses the introduction of several levels of indirection. Other
similar works include [10, 17, 30, 31, 37, 39]. Unfortunately,
these solutions rely on predetermined nodes that provide
the service, thus becoming inflexible to react to node failure
as well as new instances of middlebox functionality.

2.1.2 Policy-Based Routing (PBR):
Cisco’s policy-based approach [13] allows the administra-

tor to specify adjunctive rules for routing, that are selec-
tively applied depending on the traffic characteristics (e.g.,
IP 5-tuple, rate, etc.). Since the rules must be manually
configured on each PBR router, the solution scales poorly
and cannot dynamically react to network condition changes.

2.1.3 SDN-based Service Chaining:
Several solutions have been presented that leverage SDN

[22, 33, 45]. The general idea is to have a logically central
controller that has a comprehensive view of the administered
network portion and of the networking elements present.
This controller can determine the best route for each flow
that traverses the network and can take into consideration
the potential need for this flow to go through one or more
middleboxes. To make its decision effective, the controller

108



must add forwarding rules to the involved switches, instruct-
ing them on the new next hop for each flow that deviate from
its standard IP path.

2.2 Information Centric Networking
Information Centric Networking (ICN) has been actively

studied in recent years [4, 5, 11, 12, 21, 24]. ICN shifts the
focus of the network from node location (IP, MAC, etc.)
to data names. Such design enables name-based routing
which forwards the requests of a specific name towards a best
source of the data in terms of latency, available bandwidth,
source load and etc. Named-Data Networking NDN [4, 21]
is one of the popular ICN solutions. NDN uses human-
readable, hierarchical names such as /thisroom/projector

or /icn/papers/FCSC. pdf. The forwarding engines per-
form the longest-prefix matching in the FIB to find the
next-hop router closer to the data provider. FCSC adopts
the idea of ICN since the naming layer focuses more on the
name of the functions rather than the location of the func-
tion instances. It is implemented on a model similar to NDN
(naming and routing) but with some changes (no Pending
Interest Table or reverse-path forwarding).

2.3 Works that Combine ICN and SDN
There are several works that try to explore the poten-

tial for combining ICN and SDN [29, 34, 38]. But most of
these works use SDN technology to enable incremental de-
ployment of ICN. To the best of our knowledge, this is the
first work that tries to improve the performance of SDN via
information-centric concept (ICN).

3. SCENARIO DESCRIPTION AND PROB-
LEM STATEMENT

In this section, we describe the scenarios we envision of
how network resident functionality of middleboxes could be
utilized and point out the shortcomings of the state-of-art
SDN solutions. We will use these as the basis to demonstrate
the benefits of our proposed approach.

3.1 Service Chaining Scenario
An Autonomous System (AS), for example an IP net-

work, data center or an information centric network, is typ-
ically composed of many edge routers and a set of core
routers/switches. Packets from users enter this AS from
one of the edge routers (Ingress). These packets categorized
into flows (either by 5-tuple in IP or“Interest”prefix in ICN)
need to go through a specified set of functions in the core in
a particular order, as required by policy. The functions may
include Deep Packet Inspection (DPI), policy, QoS, Network
Address Translation (NAT), Dynamic Site Accelator (DSA),
proxying, transparent caching, accounting and logging etc.
It is also possible that a subset of these functions may in fact
be provided by third parties, and possibly in a cloud-resident
platform [35].

3.2 Detailed Requirements
With the growth of the middleboxes and the network traf-

fic, we envision that an efficient service chaining network
should meet the following requirements:

3.2.1 Flexibility:
The outcome of packet processing by a middlebox may

change the set of function(s) to be applied on subsequent

packets of the flow. E.g., after a packet goes through DPI,
the policy or algorithm may determine the need for addi-
tional network resident functions like intrusion detection,
logging, etc., to be applied on the flow. It is also possi-
ble that functions can reduce/replace the functions a flow
needs to go through. E.g., after observing a set of packets
in a flow, the DPI can decide to remove the virus scan and
even DPI itself from the function list. Therefore, even if a
set of apriori service functions were specified, they might be
changed during the lifetime of the flow. An efficient service
chaining network should support such changes in a flexible
way – the middleboxes should be able to determine the func-
tions of a flow themselves and the changes should take effect
immediately.

3.2.2 Dynamicity:
The advent of NFV allows for network resident middle-

boxes to dynamically incorporate (additional) functionality
by spinning up additional virtual machines on demand. E.g.,
if there are many more flows that require firewall function-
ality but fewer flows require DPI functionality, the network
manager should be able to instantiate more firewall nodes
and reduce the number of DPI nodes. Since more func-
tions are running on virtualized platforms, these functions
can potentially be placed anywhere in the network instead
of on only a selected set of predefined nodes. This requires
the network to be able to apply these changes as soon as
possible while keeping the communication cost low. For the
functions having multiple instances, the network should also
be able to balance the load on these instances to optimize
performance.

3.2.3 Scalability:
The scalability requirement comes in three dimensions:

the number of functions, the number of flows and the size
of the network. With more customized services provided to
network users, it is envisioned that there would be an in-
crease in the number of network functions available. For the
networks that adopt NFV, the number of instances of net-
work functions can also grow to be large. A scalable service
chaining solution should not limit the number of users/flows,
the number of functions a flow should traverse, or the size
of the network due to the response latency or the number of
states stored in the network.

3.2.4 Reliability:
A productive service chaining solution should also take

reliability into consideration. The solution should be able
to dynamically react to the node (middleboxes, switches or
controllers) failures and the link failures within a threshold.
As suggested by [32], the recovery time of a failure should
be within 10s of milliseconds.

3.3 Limitations of Existing SDN Solutions
Current SDN solutions [22,33,45] perform better than pol-

icy based routing (PBR) and indirection based solutions.
However, they are still not able to meet the requirements
mentioned above, because:

Flexibility: When a middlebox like DPI needs to change
the functions a flow requires, it has to rely on the controller
to build a new path that goes through a certain instance
of each of these functions. This results in extra control
overhead in both communication and latency for every flow
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whenever the set of functions are changed. This is not desir-
able since the controller in SDN design is supposed to gen-
erate the rules but not be involved in the real-time handling
of packets [43].

Dynamicity: It is difficult for SDN controllers to perform
real-time decisions on the path of a flow to balance the load
in the network and on the function instances. The problem
will become more severe when the number of flows grows
and NFV enables more dynamic instantiation/disposition
of function instances.

Scalability: SDN solutions place rules for every flow on
the switches. The number of rules stored in the network is
proportional to the number of flows, the functions the flows
require and the size of the network. It is very difficult to
scale when the network has larger number of flows or the
network itself grows larger.

Reliability: When a middlebox or a link fails, the switches
in the existing SDN solutions have to rely on the central con-
troller to build a new path for the flow. This increases the
convergence time while dealing with such failures and might
violate the typical 30-50ms convergence time target require-
ment typical in a large provider networks. Alternatively,
the controller has to setup backup paths proportional to the
number of hops for every flow to ensure quick convergence
time. But this exacerbates the scalability problem.

4. FCSC OVERVIEW
In this section, we start by reasoning the design choices we

have made and then describe the whole architecture based
on the design choices. Design details will be provided in §5.

4.1 Design Rationale
To achieve the requirements of flexibility, dynamicity and

reliability as described above, we propose to add a nam-
ing layer (similar to ICN) to the current SDN architecture.
Moreover, to improve the scalability of the system, we choose
to put flow-state in the packet header rather than in the
switches. But our solution is still backwards compatible with
existing SDN-based service chaining solutions.

4.1.1 Naming Layer
ICN provides flexibility to users – they only need to re-

quest the network with what they want rather than where
that data might reside. Such a shift in the focus of the net-
work also provides better dynamicity and reliability – a re-
quest can go to any of a set of possible data providers/caches
in the network.

We find a strong similarity between the fundamental needs
that drive service chaining and the capabilities offered by
ICN. Middleboxes that need to change the function list of
flow (e.g., DPI) require flexibility – they only need to care
about the functions the flow requires rather than asking the
SDN controller to build a path to where the flow should
go through. While forwarding a packet, the network can
forward the packet to any of the instances that provides the
same function. This allows the dynamic adoption of new
function instances and can also help fast recovery when a
function instance/link fails.

To achieve high performance (line-speed forwarding in the
network), we primarily incorporate the hierarchical naming
capabilities of an ICN environment like NDN, to represent
the function list and the longest-prefix matching in the FIB
to forward packets. The reverse-path forwarding (PIT) and

(a) SDN (b) FCSC
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Figure 1: Architectural design of FCSC vs. SDN.

caching (Content Store) capabilities that are used in an ICN
for information distribution is not key to this solution. Ac-
cording to [36, 42], line-speed (hashed) name forwarding is
achievable with existing hardware.

4.1.2 Flow State in the Packet Header
We note that the solutions of existing SDN-based service

chaining incorporate flow state in the switches – the switches
maintain state on how to forward a specific packet based on
the 5-tuple (or other header features) of that packet. Such
a design results in the number of rules in the network to
be proportional to the number of flows and the number of
functions these flows require. It does not scale well with the
growth of clients (flows) and the adoption of new functions
in the network.

Therefore, we choose to put the flow state – the functions
the packet still need to traverse through – in the packet
header. The function list of a packet (in the form of an ICN
name) is tagged to the packet header when it enters the
network. After traversing through a middlebox, the name
of the applied function is removed from the header and the
network will forward the packet to the next function it re-
quires.

In our solution, the network only needs to maintain for-
warding information on a per-function basis rather than a
per-flow basis. The amount of state stored is therefore pro-
portional to the functions in the network but not the flows,
and thus our solution can scale much better than existing
solutions.

4.1.3 Compatibility with existing SDN solutions
Network management, as exemplified by service chaining,

needs SDN for flexible placement of functions and more pow-
erful routing, and achieves this because it has a (logically)
centralized view of the whole network. The purpose of our
solution is not to replace these ideas in SDN solutions or
to remove the existence of the (logically) central controllers,
but to make them more flexible by the modifications pro-
posed in our paper: namely the naming layer and the use
of flow state in the packet header. Our solution can also be
backwards compatible with the existing SDN solutions by
naming all the intermediate switches (in the form of IP or
MAC addresses) and setup a separate forwarding table on
every switch in a hop-by hop manner. But that will result
in the loss of the benefits mentioned above.

4.2 Architecture Description
Fig. 1 illustrates the logical separation of the architecture

of FCSC compared to existing SDN solutions. As described
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above, we add a Naming Layer in the architecture that sep-
arates the policy module (the module that manages what
functions should be applied to a flow) from the routing mod-
ule (the module that manages where the function instances
reside). The representation of the naming layer (the func-
tion list a packet should go through) resides in the packet
header to scale the network better. To help understand the
figure, we describe the differences between the two solutions
in the following 4 scenarios (following the marking on the
figure):

a. Flow initiation:
In SDN, on seeing a new flow, the ingress sends the flow

feature (e.g., 5-tuple) to the controller. In this case, the con-
troller has the function module and routing module coupled.
The controller determines the result, a set of forwarding
rules (e.g., 5-tuple7→NextHop) that are then incorporated
on different switches on the path.

In FCSC, the controller determines which functions the
flow needs and return the result only to the ingress. The
ingress then tags the packets of the flow with the function
list. On seeing the functions carried in the packet header,
switches in the network will look into their FIB (in the form
of Function7→NextHop) and decide the outgoing“face”of the
packet. The FIB of the switches are controlled by the Rout-
ing Module. The Routing Module can either be distributed
(e.g., OSPFN [41], IS-IS [8]) or logically centralized (e.g.,
SDN).

b. Proactive rules:
The controller can also setup wildcard proactive rules on

every ingress. An SDN controller essentially has to build a
path for every flow from each ingress. This increases com-
plexity since almost every edge router can be an ingress and
there might exist O(N2) src-dst paths where N is the num-
ber of edge routers even without considering different paths
for a same src-dst pair.

In FCSC, the controller only needs to flood the wild card
rules (FlowFeature 7→FunctionList) to all the ingress. The
core of the network does not have to keep any state on a per
flow basis any more.

c. Policy change by middleboxes:
When certain middleboxes need to change the policy (func-

tion list) of a flow, in SDN the middleboxes have to request
the controller to build a new path for the flow. This might
result in even more state in the network and also higher la-
tency, just like what we would experience at the beginning
of a flow.

FCSC allows middleboxes to determine the new policy,
without having to request the controller to change forward-
ing rules at specific switches. These middleboxes change
the function list in the packet header and the network will
forward it towards the next middlebox automatically. Addi-
tionally, they may notify the ingress to change the function
list for the future packets of the flow. This solution there-
fore only requires a change in the state of the packet header
and the ingress as opposed to every switch on the old and
new path. Therefore, unlike existing solutions, it does not
require additional set up time while a middlebox like DPI
tries to modify the policy. It is thus able to quickly enforce
the policy on the newly arriving packets.

d. Dynamic routing:
With existing SDN solutions, the functions a flow requires

is represented by the path it follows. Whenever a middlebox

Middlebox 
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ICN-Switch 

Ingress Egress 

Firewall 
A 

Load 
Balancer 

Firewall 
B 
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chain:/Cache/R5 

chain:/LB/_FW/Cache/R5 

Cache 

chain:/Firewall/_B/Cache/R5 

chain:/Cache/R5 

chain:/R5 

DPI 

DPI 

chain:/DPI/Cache/R5 

Figure 2: Example of the name changing of a packet
in FCSC.

fails, the failure notification has to be reported to the con-
troller before the new path that includes another instance
of the function is built for the flow. Approach in [32] pre-
computes backup paths to shorten the recovery time on such
failures, but this results in exponential complexity due to the
permutations and function combinations. When a new in-
stance of a function is adopted, it is also difficult to use it
for existing flows for purposes of load balancing.

FCSC separates the routing of flows from the policy. The
switches can decide (an alternate) outgoing face based on
its own FIB. This shortens the response time for node/link
failures and can make use of new instances of functions on
the fly (as long as the FIB is updated based on the Routing
module).

5. DESIGN DETAILS
In this section, we describe in detail how we design the

architecture to ensure a highly efficient and scalable service
delivery network.

5.1 Naming Strategy
We extend the ICN principle of naming content to naming

function. Every instance that provides the same function is
referred to by the same name, e.g., /DPI, /Firewall, etc.

When the network policy requires a flow to go through
a sequence of functions, the policy executor (the controller
or the ingress) will encapsulate each packet of the flow with
a header containing a name that represents the sequence of
functions to be executed, in a FCFS manner. E.g., a packet
header with name chain:/DPI/Cache/R5 implies that DPI
and cache function must be applied to that packet before
it exits the network from the egress R5. Here, we use the
scheme identifier (as per URI Generic Syntax [7]) “chain”
to represent the packets for service chaining. We can use
other identifies like “monitor”, “ctrl”, etc., to represent pack-
ets meant for other purposes (e.g. monitoring and control-
ling, etc.)

The switch fronting a middlebox (SxFM) will pop the first
part of name (prefix) in the packet header before it forwards
the packet to a middlebox function associated with it. Some
policy nodes can also change the name to redirect the packet
towards other functions.

Prefix popping is a simple and stateless task. It can be
separated from the switching and the middlebox functions.
If necessary, we can include a designated hardware compo-
nent for acceleration,or instantiate a virtual prefix popping
function, on the SxFM (although we believe it is a sim-
ple task). Since it is a stateless task, the SxFM can also
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have multiple of these components (either hardware-based
or software-based) that run in parallel to ensure line-speed
forwarding is achieved on the SxFM.

Fig. 2 illustrates the lifetime of a packet in our network.
The ingress encapsulates the incoming packet with a header
chain:/DPI/Cache/R5 as desired by policy. The network for-
wards the packet to the SxFM of the “best” DPI function
(in terms of relative location, latency or other criteria). The
prefix /DPI is removed when passing through the prefix pop-
ping function (represented by a green box) before entering
the DPI box. The DPI function decides the packet should
also go through a firewall and since there is a load balancer
for the two firewalls in the network, the DPI adds a prefix
/LB/_FW to the header. The prefix is replaced with /Fire-

wall/_B by the load balancer since it decides that the flow
should go through Firewall B. The remaining prefixes are
popped one by one when going through the Firewall B and
Cache. On reaching R5, the egress sees its own name and
therefore it decapsulates the packet and forwards the origi-
nal packet out of the network.

5.2 Routing Strategy
Middleboxes need to advertise their existence before they

can be used by the flows. A middlebox offering a certain
service (e.g., Firewall) advertises the name of the service
as prefix (e.g., /Firewall). Packets whose names have the
prefix /Firewall can be routed towards this middlebox as a
consequence of the normal name based routing. A packet in
FCSC is only forwarded to one middlebox even when mul-
tiple middleboxes exist for the same function (prefix). The
intermediate switches can monitor the popularity of a func-
tion based on these prefixes, and they can create additional
instances where needed with NFV support.

The decision of which exact instance of the function a
packet should traverse is determined by the routing mod-
ule. FCSC does not limit the routing module that can be
adopted. To better support different routing strategies, we
provide a simple standard interface for the routing module to
control the forwarding decision. We add a “cost” field in the
FIB and thus the data structure looks like Function7→{Next-
Hop, Cost}. If multiple “NextHop”s exist for the same func-
tion, the switch will always forward the packet to the next
hop with the lowest cost. The routing module can have dif-
ferent interpretations of the “cost”, e.g., link latency, policy,
energy/work-load considerations, etc.

The choice of the routing scheme can affect the dynamicity
and reliability of the whole solution. We discuss the bene-
fits and issues of some possible routing solutions – generally
categorized into centralized and distributed schemes. But,
it should be noted that regardless of which routing scheme
is used, FCSC is able to achieve better scalability since we
only maintain function state.

Centralized/SDN solutions (e.g., [33]) have better con-
trol over the node state including what is maintained at
switches and middleboxes. They provide more flexible con-
trol in determining where middleboxes should be placed and
monitoring node state. Routing based on names of function
instances may offer better real-time load balancing capabil-
ity, faster failure recovery and utilization of new function
instances.

Distributed routing solutions (e.g., [41]) allow every switch
to have the intelligence to make routing decisions on its own.
This would enable dynamicity in routing to a newly created

instance or avoiding a failed link/middlebox. But these solu-
tions might incur higher control overhead for synchronizing
the network state on every switch, especially when auto-
matic load balancing is required for different instances of
the same function.

We realize that both the centralized and the distributed
routing methods face the difficulty of achieving real-time
load balancing similar to [3]. A compromise is for the net-
work to incorporate a load balancer to dynamically dis-
tribute the load on the servers/middleboxes that have the
same functionality. Our architecture can fully support such
load balancers (see the example in §5.1).

5.3 Stateful Middleboxes
There might be some functions in the network that need

to maintain state. In such a case, all the packets of a flow
should go through the same instance, even though they may
not care which actual instance they might use. This implies
that the different instances for the same function cannot
be treated equivalently. The two firewalls in Fig. 2 could
be an example of this kind. FCSC adopts the hierarchical
name in ICN to meet this requirement. Instead of using the
same name, the multiple instances share a common prefix
(function name), but they have function-level unique ID.
E.g., the firewalls in Fig. 2 are called /Firewall/_A and
/Firewall/_B respectively.

While advertising the prefix, the middleboxes advertise
the whole name instead of the function name itself. If a
packet can go through any of the instances for a function,
it just puts the function name in the header (e.g., chain:
/Firewall/Cache). Otherwise, it will use the full name (e.g.,
chain:/Firewall/_A/Cache). This can be determined by the
policy executor or on the fly. ICN switches perform the
longest-prefix match, and therefore the packet can be for-
warded to the required function instance, if specified. While
popping the name from the packet header, we can also per-
form “longest-prefix popping” of the full instance name from
the name list. To avoid ambiguity, this solution requires
that the instance ID space should not overlap the function
name space. E.g., Firewall B pops both the /Firewall and
/_B prefixes from the packet header in Fig. 2.

For the functions that require visibility of the bidirectional
packets of a flow, the policy module can also specify the
function instance via its full name and create a function (in-
stance) list in the reverse order. E.g., if say the firewall func-
tion (only) requires packets from both directions, the policy
layer can create name chain:/DPI/Firewall/_A/Cache for
one direction and chain:/Cache/Firewall/_A/DPI for the
other.

5.4 Security
Security is another big concern in service chaining. The

users of the network should not have any chance to infiltrate
the network and steer the packets through paths that are not
allowed by the policy.

FCSC encapsulates each packet at the point they enter the
network and decapsulates them on egress. Therefore, the
service provider network is essentially transparent to users.
We do not provide any user interfaces to the clients and
therefore there should be no way a user can interact with the
encapsulation/decapsulation function or the other function
modules in the network. No client of FCSC can violate this
policy by altering the packet in some way.
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6. EVALUATION
In this section, we evaluate on a custom simulator (widely

used in previous works [12] [11]) the dynamicity, reliability
and scalability of FCSC with a distributed routing module
and compare it to a relatively simple (physically) central-
ized SDN solution that is conceptually similar to [33, 45].
These approaches use the basic OpenFlow protocol con-
structs that is a controller interacting with network forward-
ing elements [28].

We recognize that there are approaches for decentralized
SDN solutions like [23, 43], but the results from [25] show
that the inconsistent SDN control state can significantly
degrade performance of logically centralized control appli-
cations that are agnostic of the underlying state distribu-
tion. In addition, the communication overhead for keeping
all the controllers synchronized has to be addressed. More-
over, even if there exists multiple controllers, it is still fair
to assume that each of these controllers is in charge of a set
of routers (a portion of the network). Therefore, the cen-
tralized solution we use here can also be viewed as such a
portion.

We first demonstrate the benefits of FCSC on a small
synthetic topology (shown in Fig. 3a). Subsequently, we run
a large-scale simulation on a real world topology to evaluate
the scalability and the efficiency of our solution in a more
realistic environment.

6.1 Study of FCSC Behavior
Fig. 3a shows a simple topology with multiple middle-

boxes. R1-R6 are FCSC capable switches. N1-N4 and DPI
provide functions A and B and DPI as noted in the fig-
ure. Src and Dst are the source and destination of a flow
of interest. Ctrl is the central controller in an SDN solu-
tion. The link latency between switches is 2ms and the
latency between switches and the end-systems (middlebox,
src, dst, control) is 10ms. The bandwidth on the link is
100Mbps (large enough to support the flow). The process-
ing latency on all the middleboxes (including Ctrl) is 1ms,
or 1000pps (packets per second). The sending rate at src is
also 1000pps.

We use several scenarios to compare the behavior of FCSC
with the simple SDN solution:

6.1.1 Proactive rules for flow initiation:
We first compare the initiation phase for both solutions.

We compare FCSC with an SDN solution without proactive
rules set up in the switches.

Fig. 3b shows the overall latency (the amount of time
spent from Src to Dst in the network) of every packet in
the initiation phase of a flow that requires DPI and B func-
tion. Because FCSC does not make a request to the central
controller, it can achieve significantly lower latency for the
first 30 packets of a flow compared to the SDN solution.
This reduction may be critical for small flows that require
timely processing of middlebox functions (e.g., games).

We recognize that with proactive rules set up in the switches,
SDN solutions can achieve lower latencies, as good as FCSC.
However, we believe it still requires a lot more effort to pre-
calculate the paths for different permutations as compared
to our solution.

6.1.2 Dynamic Policy change on Middleboxes:
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Figure 3: Behavior of FCSC: Topology and Results.

In the second experiment, the default policy requires a
flow to go through DPI and B functions (represented as a
chain:/DPI/B). But the DPI then decides to add function A
and also removes itself from the function list (the name then
becomes chain:/A/B) after it examines the first packet of the
flow (this is a typical dynamic function processing required
in service provider networks for actions such as mobile video
processing etc.). In the SDN solution, DPI requests Ctrl to
create a new path for the flow and block the packets from
being forwarded before the new path is built. In contrast,
with FCSC, DPI directly renames the packets that continue
to arrive and notifies the ingress (R6) to change the policy.
There is no need to block the packets at the DPI.

Fig. 3c shows the latency of the first 90 packets in the flow.
In FCSC, only the first 29 packets go through DPI with less
than 75ms overall latency . However, in SDN, 73 packets
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flow into DPI before Ctrl can setup a new rule for the later
packets. The overall latency of the first packet grows up to
165ms. Another 4 packets experienced a loop since the rules
are not setup atomically.

From the result, we see that FCSC responds faster to the
dynamic policy changes, this results in lower packet latency
and also lower DPI load (process & modify 29 headers vs.
process & buffer 73 packets in this example).

6.1.3 Dynamic failure recovery:
In the third trace, the flow is required to go through

functions A and B (represented as chain:/A/B). The initial
shortest path routing in both SDN and FCSC choose to go
through N3 for A and N2 for B. We dispose N3 at 150s
and N2 at 240s and see the packet loss and recovery time in
FCSC and SDN.

Fig. 3d shows the overall latency of the packets that reach
Dst. The packets in the outgoing buffer of SxFM and on the
link to a failed middlebox (∼ 10 pkts) have to be dropped in
both solutions. Since the intermediate switches can redirect
the packets without going to the central controller, FCSC
can have around 25 more successful deliveries every time
a node fails. This value can increase when the network is
becoming more complex or the controller is farther away
from the failure.

6.1.4 Dynamic adaption to new instances:
The last trace has a flow that goes through functions A

and B. At the beginning of the trace, only N1 and N4 are
instantiated. N3 is created at 150s and N2 is created at
240s.

Fig. 3e shows the overall latency of the packets in the
flow. The SDN solution does not modify the path of the
ongoing flows due to the complexity (the problem is simi-
lar to a warehouse location problem and is NP-complete).
Therefore, the latency does not change even when the new
instances are created for the functions. FCSC enables the
middleboxes to advertise their function prefix to the net-
work and the switches can redirect flows based on that in-
formation and therefore this solution can adapt to the new
instances and the latency is lowered. Note that when N3

is instantiated at 150s, the flow is redirected to N3 for the
shorter distance from the ingress, but the overall latency
is not changed because the same number of hops are tra-
versed. However, adding N2 reduces the latency in FCSC as
the packets do not have to flow to N4.

6.2 Large Scale Evaluation
We adopt a slightly modified Rocketfuel topology [26] (Ex-

odus, AS-3967, see Fig. 5) to evaluate FCSC in a real world
environment. The 18 cities present in this topology is used
as the core network. The latency between every pair of these
core switches is determined by the average of the latency on
the links between the two cities. We eventually get 30 links
with latency ranging from 2ms to 21ms and a mean value of
6.6ms. The latency between the core switches and the end-
hosts, middleboxes and the controller is set to 6ms. Since
the original topology only contains latency information, we
assign 100Mbps bandwidth to all the links.

We assume that there exist 11 different functions in the
network. One of them is unique in that the DPI-like function
rewrites the function list as needed. The flows belong to one
of the 100 different applications. Every application requires
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Figure 4: Benefit of increasing # of instances per function.

a range of different network functions varying in number
from 1 to 4. DPI can dynamically change the functions a
flow that needs.

6.2.1 Varying number of function instances
We first study the benefits of adopting FCSC in a net-

work that dynamically creates virtual instances at random
switches. We study 100 long-lasting (5min) flows starting
at 0s with different sending rate (ranging from 120kbps to
1.05Mbps).

At the beginning of the simulation, we have 1 instance for
each function initialized. Then, we start a new randomly
located instance for each function every half a minute until
the maximum number of instances is reached (the maximum
number of instances for each run is shown in the x-axis in
Fig. 4). In the first run, only the initial middleboxes are
used for the entire 5 minutes; in the second run, in addition
to the initial functions, another one instance per available
function is randomly placed on a switch in the network at
time 30s and lasts until the end of the simulation. In the
third run, a third instance is put into the network at time
60s and so on.

Fig. 4 shows the average latency vs. the number of in-
stances eventually initiated for that simulation run. We see
that FCSC can automatically adapt by making use of new
instances that are closer, even for the ongoing flows and
the average latency drops from 100.75ms to 91.66ms when
adding a second instance. The latency is further reduced
to around 85ms when we have 5 instances created. This is
beneficial for long flows compared to the alternative SDN
solution where the ongoing flows are unaffected by dynamic
addition of functions in the network, unless the controller
resets the rules.

The results illustrate that FCSC is able to seamlessly take
advantage of new instances of virtual middleboxes that have
the same functionality, even when the network is not over-
loaded. We can also observe that the higher the number of
instances, the lower the incremental benefit. In our scenario
consisting of 18 switches, more than 8 instances do not yield
additional benefit. Ignoring the absolute numbers, since it
is topology dependent, one can nevertheless envision that
there is a tradeoff between user-experience and the cost of
the deployment. Another way to reduce the latency is to
pick an optimal location to instantiate the middlebox. This
is an additional optimization that can complement our ar-
chitectural proposal, and is part of our future work.

6.2.2 Varying number of flows & function instances
We now load the simulation with a varying number of

flows (50, 100, 150, . . . , 500). Each flow has its own arrival
time (within the first 5min), a sending rate in the range
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Figure 6: Results for varying-flow simulation.

Figure 5: RocketFuel topology (Exodus, AS-3967).

(1.2Mbps - 11.9Mbps) and duration (0.05s to 91.24s). We
also randomly generated 1, 151 middlebox creation/failure
events during the simulation period. We run the trace on
both the FCSC and SDN solutions and compare the aver-
age latency for the flows, packet loss caused by middlebox
failure, and the number of rules stored on the switches.

Fig. 6a shows the average latency along with 95% confi-
dence interval (CI) for the different flows. FCSC provides
lower average latency and less variability compared to the
SDN solution, since the flows are able to take advantage of
new instances that are closer.

The overall percent of packet lost in Fig. 6b shows that
with the dynamic failure recovery, FCSC helps to deliver
more packets to the destination. Lower loss rate usually
means lower re-transmission rate and also lower overall net-
work cost.

FCSC capable switches only maintain rules on a per avail-
able instance of a function, unlike the SDN solution that
keeps rules for each flow type (defined by a n-tuple, poten-
tially with wild-cards). Therefore, the number of rules do
not change when we vary the number of flows (as shown in
Fig. 6c). However the number of rules in SDN grows with
the number of flows. We argue that our solution can be
more scalable especially in a large network with millions of
concurrent flows.

7. SUMMARY
Existing SDN-based network management solutions pre-

translate the policy (what) into the forwarding rules at spe-
cific switches (where). Such a design choice limits the ben-
efits that a truly software-based network could provide. By
proposing FCSC, we explore the potential of using information-
centric concepts within an SDN-based network management
environment, especially focusing on service chaining. Using
both synthetic and realistic topologies, we show that FCSC
is able to provide policy makers simpler interfaces to con-

trol a flow (flexibility), is able to react to middlebox failures
with fewer packet drops (reliability), is able to more quickly
adapt to new instances of middlebox functionality (dynamic-
ity), and requires less state to be maintained in the network
(scalability). For our future work, we will explore better
routing mechanisms that can fully exploit the benefits pro-
vided by FCSC.
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